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ABSTRACT 

A Psychometric Analysis of the Precalculus Concept Assessment 
 

Brian Lindley Jones 
Educational Inquiry, Measurement, and Evaluation, BYU 

Doctor of Philosophy 
 

 The purpose of this study was to examine the psychometric properties of the Precalculus 
Concept Assessment (PCA), a 25-item multiple-choice instrument designed to assess student 
reasoning abilities and understanding of foundational calculus concepts (Carlson et al., 2010). 
When this study was conducted, the extant research on the PCA and the PCA Taxonomy lacked 
in-depth investigations of the instruments' psychometric properties. Most notably was the lack of 
studies into the validity of the internal structure of PCA response data implied by the PCA 
Taxonomy. This study specifically investigated the psychometric properties of the three 
reasoning constructs found in the PCA taxonomy, namely, Process View of Function (R1), 
Covariational Reasoning (R2), and Computational Abilities (R3). 
 
 Confirmatory Factor Analysis (CFA) was conducted using a total of 3,018 pretest 
administrations of the PCA. These data were collected in select College Algebra and Precalculus 
sections at a large private university in the mountain west and one public university in the 
Phoenix metropolitan area. Results showed that the three hypothesized reasoning factors were 
highly correlated. Rival statistical models were evaluated to explain the relationship between the 
three reasoning constructs. The bifactor model was the best fitting model and successfully 
partitioned the variance between a general reasoning ability factor and two specific reasoning 
ability factors. The general factor was the dominant factor accounting for 76% of the variance 
and accounted for 91% of the reliability. The omegaHS values were low, indicating that this 
model does not serve as a reliable measure of the two specific factors. 
 
 PCA response data were retrofitted to diagnostic classification models (DCMs) to 
evaluate the extent to which individual mastery profiles could be generated to classify 
individuals as masters or non-masters of the three reasoning constructs. The retrofitting of PCA 
data to DCMs were unsuccessful. High attribute correlations and other model deficiencies limit 
the confidence in which these particular models could estimate student mastery. 
 
 The results of this study have several key implications for future researchers and 
practitioners using the PCA. Researchers interested in using PCA scores in predictive models 
should use the General Reasoning Ability factor from the respecified bifactor model or the 
single-factor model in conjunction with structural equation modeling techniques. Practitioners 
using the PCA should avoid using PCA subscores for reasoning abilities and continue to follow 
the recommended practice of reporting a simple sum score (i.e., unit-weighted composite score). 
 
 
 
Keywords: factor analysis, Diagnostic Classification Models (DCMs), calculus, mathematics 
education
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CHAPTER 1 

Introduction 

 The Precalculus Concept Assessment (PCA) is a 25-item multiple-choice instrument 

designed to assess a student’s reasoning abilities and understanding of foundational calculus 

concepts (Carlson et al., 2010). Carlson and her colleagues developed the instrument through a 

series of research studies, which resulted in the PCA Taxonomy formation (Appendix A). This 

taxonomy identifies reasoning abilities and conceptual understandings essential for a student’s 

success in learning calculus. Items on the PCA instrument were developed to align with the PCA 

Taxonomy. Carlson et al. identified several possible uses for the PCA, including “(a) assessing 

student learning in college algebra and precalculus, (b) comparing the effectiveness of various 

curricular treatments, and (c) determining student readiness for calculus.” (2010, p. 113). The 

primary focus of this research was to examine the factor structure of the reasoning abilities 

portion of the PCA Taxonomy.  

The original publication describing the PCA (Carlson et al., 2010) details an admirable 

instrument development process. The iterative process of item development and refinement 

provides strong evidence for the content validity of the instrument. It is no surprise that the 

majority of publications citing the PCA reference the underlying theory of the PCA based on the 

PCA Taxonomy. The current Standards for Educational and Psychological Testing (American 

Educational Research Association [AERA] et al., 2014), which from this point forward will be 

referred to as the Standards, list five general types of validity evidence that may be used to build 

a case for the validity of test use and interpretation. These five pieces include: 

• Evidence based on test content 

• Evidence based on response processes 
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• Evidence based on the internal structure 

• Evidence based on relations to other variables 

• Evidence for the consequences of testing 

 The Standards emphasized that each of the above forms of evidence is not required in all 

settings. However, that evidence should be selected based on the evidence's appropriateness to 

support test interpretation and use. The Standards noted that “a sound validity argument 

integrates various strands of evidence into a coherent account of the degree to which existing 

evidence and theory support the intended interpretation of test scores for specific uses.” (AERA 

et al., 2014, p. 21). As the Standards suggested, specific uses and intended interpretations of 

PCA results are required to build a robust validity argument. It may be inferred from Carlson et 

al. (2010) that PCA scores are intended to represent the degree to which students have mastered 

a “composite effect of the reasoning and understandings on student abilities” (p. 137) outlined in 

the PCA Taxonomy. As previously cited, Carlson et al. (2010) suggested that PCA scores could 

be used to (a) assess student learning, (b) investigate curricular interventions, and (c) gauge 

calculus readiness. Before writing this dissertation, the primary evidence to support the validity 

of these interpretations and uses of PCA results has rested solely on instrument content-based 

evidence.  

Statement of Problem 

 The Precalculus Concept Assessment (PCA) is well-developed by many test development 

standards (AERA et al., 2014; Haladyna, 2004; Lane, Raymond, & Haladyna, 2016; Miller et al., 

2013). Carlson et al. (2010) should be commended on developing the PCA Taxonomy and its use 

for carefully guiding and defining concepts assessed by the PCA. Furthermore, the item writing 

and refinement based on student interviews supplied substantial evidence for the test's content 
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validity (AERA et al., 2014, p. 82; M. C. Rodriguez, 2016). Multiple-choice response options 

were well researched through the preliminary use of open-ended questions to identify common 

misconceptions. Plausible distractors were developed from this research, and response options 

were further refined or eliminated based on an in-depth distractor analysis.  

Although items were developed with great care, Carlson et al. (2010) noted “that there 

are significant and complex interactions among the subcategories [of the PCA Taxonomy] so 

that no one subcategory can be completely isolated” (p. 119). They further described an 

individual student’s score on the PCA as “a broad indicator of reasoning abilities and 

understandings relative to the PCA Taxonomy” (p. 137). An in-depth analysis of articles citing 

Carlson et al. (2010) found no published articles that empirically investigated the dimensionality 

of the test to provide evidence to support the extent to which the “complex interactions among 

subcategories” are manifested in the data.  

An empirical investigation of the internal structure of PCA response data has the 

potential to produce empirical evidence to support the calculation and use of a single score or 

multiple subscores (Standards 1.13, 1.14, 1.15; AERA et al., 2014). The common practice of 

limiting PCA results to a simple sum score (i.e., unit-weighted composite score) may be less 

appropriate and informative if psychometric analyses yield evidence that the PCA is 

multidimensional. 

Statement of Purpose 

There were two overarching purposes for conducting this research. First, this research 

empirically investigated the dimensionality of PCA response data in relation to the three 

reasoning abilities specified in the PCA Taxonomy. The purpose of this portion of the research 

was to examine empirical evidence of the internal structure to inform the methods by which the 
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PCA scores are interpreted and reported (i.e., single total score or multiple subscores). Second, 

this research investigated the use of diagnostic classification modeling techniques as a means for 

providing fine-grained diagnostic information (i.e., mastery profile) for each student regarding 

their mastery of the three reasoning abilities. 

Research Questions 

This study focused on the following research questions: 

1. To what extent does a confirmatory factor analysis of PCA pretest data provide 

evidence that supports the validity of the three-factor structure implied by the PCA 

Taxonomy? 

2. If the three first-order factors are found to be highly correlated, to what extent do rival 

models (i.e., a single-factor model, a second-order factor model, or a bifactor model) 

fit better than the three first-order factors model and illuminate the interrelationships 

among the three first-order factors? 

3. How successfully can the PCA response data be retrofitted for an analysis using a 

general diagnostic classification model (DCM)? 

4. How does the adequacy of a DCM model based on the factor structure implied by the 

PCA Taxonomy compare with a DCM model based on the CFA results? 
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CHAPTER 2 

Review of Literature 

 The literature review presented in this dissertation consists of a synthesis of research on 

(a) a general approach to test development, (b) the Precalculus Concept Assessment (PCA), (c) 

the application of factor analysis for the use of instrument evaluation, and (d) the use of 

diagnostic classifications models for the analysis of assessment data.  

General Test Development 

 Test development that supports the validity of score uses and interpretation requires a 

systematic approach. The Handbook of Test Development contains a detailed description of the 

test development process. This development process can be summarized in a framework of 12 

coordinated components. “Each of these 12 components can be used to provide a framework for 

collecting and organizing evidence to support the psychometric quality of the test and the 

validity of the test score interpretations and uses” (Lane, Raymond, Haladyna, & Downing, 

2016, p. 3). 

Twelve Test Development Components: 

• Overall Plan 

• Domain Definition and Claims 

Statements 

• Content Specifications 

• Item Development 

• Test Design and Assembly 

• Test Production 

• Test Administration 

• Scoring 

• Cut Scores 

• Test Score Reports 

• Test Security 

• Test Documentation 
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 The overall plan serves as a guide for navigating the other components of the 

development process. The plan should clearly articulate the test objectives and outline the steps 

for gathering validity evidence required to support the intended score interpretations and uses. 

Defining the test's domain and content is one of the significant considerations for test 

development, particularly achievement tests. This component of test development may be 

considered the keystone of the test development process. Lane, Raymond, Haladyna, and 

Downing (2016) asserted that  

The effectiveness of all other test development activities relies on how well the domain is 

defined, and claim statements are delineated. The validity of test score interpretations and 

uses rest on the adequacy and defensibility of the methods used to define the domain and 

claim statements and the successful implementation of procedures to systematically and 

sufficiently sample the domain (p. 6). 

Miller et al. (2013) emphasized that in addition to defining the test domain in general terms, a 

specific focus should be given to portions of the domain related to the identified goals and 

objectives of the test. Priority should be given to salient portions of the domain, reflecting the 

importance of goals and objectives.  

 Test content specifications include both the content to be sampled from the domain of 

interest as well as the response format (i.e., “mechanism that a test taker uses to respond to a test 

item”; AERA et al., 2014, p. 223). The Standards (AERA et al., 2014, p. 15) noted that other 

aspects of the test content, including cognitive processes and response type, should be included 

as part of the content specifications. Miller et al. (2013) recommended using a table of 

specifications to specify the test's content. The table of specification establishes the relationship 

between the subject-matter content and the instructional objectives. Many tables of specification 



www.manaraa.com

7 

 
 

form a two-way table with rows representing the subject-matter content and the columns 

representing various levels of cognitive complexity (e.g., Bloom’s Taxonomy). The entries in the 

two-way table cells specify the number of test items designed to measure the intersection of 

content and cognitive complexity. The table of specifications can be used to furnish evidence 

that the test adequately samples content from the domain of interest.  

 As part of the test content specifications, identifying salient constructs helps to ensure 

appropriate construct representation. Identifying salient constructs also aids in identifying the 

presence of factors that may be ancillary or irrelevant to the constructs of interest. A thorough 

test development process will employ specifications that will limit construct underrepresentation 

and construct-irrelevant variance. Evidence for construct validity is produced mainly in the test 

development phase. Miller et al. (2013) suggested a focused approach to gathering evidence for 

construct validity by emphasizing evidence that is reasonable to gather and is relevant to the 

specified uses and interpretations of test scores.  

Item development includes both the item type and item writing. Item types should be 

selected to adequately measure test constructs with enough fidelity to stand as validity evidence. 

Selecting item types is often influenced by extraneous factors related to cost, scoring, and 

administration time. Lane, Raymond, Haladyna, and Downing (2016) recommended that “the 

methods and procedures used to produce effective items are a major source of validity evidence 

for all testing programs. Complete documentation of these steps is essential” (p. 8). 

Subject-matter experts commonly write item content. Test developers often take the role 

of guiding item writers to ensure the quality of items. Miller et al. (2013) listed eight 

recommendations for item writing: 

1. Use test and assessment specifications as a guide. 
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2. Write more items and tasks than needed. 

3. Write the items and tasks well in advance of the testing date. 

4. Write each test item and assessment task so that the task to be performed is clearly 

defined, and it calls forth the performance described in the intended learning 

outcome.  

5. Write each item or task at an appropriate reading level. 

6. Write each item or task not to provide help in responding to other items or tasks. 

7. Write each item so that the answer is one that would be agreed on by experts or, in 

the case of assessment tasks, the responses judged excellent would be agreed on by 

experts. (pp. 164–165) 

Following these general recommendations can help avoid some of the more prominent errors in 

item writing. However, more specific recommendations related to specific item types can be 

found in the test development literature. Poorly constructed items introduce construct-irrelevant 

variance. An external item review by experts not involved in item development can supply 

valuable feedback for improving item quality. Piloting items is another practice used to improve 

item quality. Item pilots, or field tests, allow the test developer to (a) perform preliminary item 

analysis of item difficulty, (b) discrimination, (c) differential item functioning, and (d) 

investigate relationships with other items. Other forms of item review include cognitive 

interviews or think-aloud protocols. 

 The test development process also includes the development and design of scoring and 

reporting procedures. As noted by Lane, Raymond, Haladyna, and Downing (2016), “Reporting 

test results is considered to be one of the most essential activities of the test development process 

because the way in which results are reported can either enhance or jeopardize valid score 
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interpretations and uses.” (p. 15). The purpose for which a test is administered and the score 

reporting should be aligned. For example, a classroom test developed to help students identify 

knowledge gaps should report test results in a way that clearly articulates these gaps. 

In contrast, a normative test designed to compare student performance should clearly 

communicate student performance relative to other students. If subscores are used, the Standards 

(AERA et al., 2014) have noted the need to provide rational and relative evidence for the use and 

interpretation of subscores. Likewise, the use of a composite score should also be supported by 

empirical evidence for the composite score's interpretation and use.  

Concept Inventories in the Sciences 

 A concept inventory is a test explicitly developed to assess student conceptual 

understanding in or working knowledge of a particular domain. Concept inventories are 

occasionally referred to as tests of misconception. These tests often consist of a set of multiple-

choice items where distractors are associated with domain-specific misconceptions. There are 

several varying approaches to developing a concept inventory; however, most approaches follow 

these general steps: 

1. Research and development of taxonomies of conceptions and the identification of 

common misconceptions are developed.  

2. Open-ended questions are constructed. 

3. Open-ended questions are refined through cognitive interviews. 

4. Multiple-choice distractors are developed. 

5. Verification is conducted using with additional item testing using pilot items and 

cognitive interviews. 
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The foundation of a concept inventory is the research supporting the identification and pertinent 

concepts and the associated misconceptions. The validity of a concept inventory may quickly 

come into question without adequate foundational research.  

 The Force Concept Inventory (Hestenes et al., 1992) is perhaps one of the most cited 

examples of a concept inventory. At the time of its publication, the Force Concept Inventory was 

the culmination of several years of research and the development of the Mechanics Diagnostic 

Test (Hestenes & Halloun, 1995; Hestenes & Wells, 1992). At the time, the approach used by 

Hestenes et al. (1992) was an innovation in the science field because it did not focus on student 

problem-solving skills. They proposed that the Force Concept Inventory be used as a general 

measure of Newtonian and non-Newtonian thinking. They also suggested the instrument could 

be used to diagnose misconceptions and to evaluate instructional practices.  

 An abundant number of concept inventories in the sciences were developed after the 

publication and popularization of the Force Concept Inventory. These inventories not only vary 

in their content domain but also in the quality of their development process. Table 1 provides a 

non-exclusive list of other concept inventories in the sciences. The instrument of focus for this 

dissertation, the Precalculus Concept Assessment (Carlson et al., 2010), followed the rigorous 

development process modeled by the Force Concept Inventory. Carlson et al. (2010) cited the 

Force Concept Inventory and the associated development process as the inspiration for the 

PCA’s development. Although they did not follow the same naming convention, the PCA could 

be considered in the same class as other concept inventories.  

Review of Precalculus Concept Assessment (PCA) 

The Precalculus Concept Assessment (PCA) is an instrument developed by Carlson et al. 

(2010). The PCA was developed to measure students’ reasoning abilities and understandings,   
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Table 1 

Examples of Concept Inventories in the Sciences 

Field Instrument Name Reference 
Biology Conceptual Inventory of Natural Selection 

 
Anderson et al., 2002 

 Osmosis and Diffusion Conceptual Assessment 
 

Fisher et al., 2011 

 The Genetics Concept Assessment 
 

Smith et al., 2008 

 Genetics Literacy Assessment Instrument 
 

Bowling et al., 2008 

 Host Pathogen Interactions 
 

Marbach-Ad et al., 2010 

 
 

  

Physics and 
Astronomy 

Star Properties Concept Inventory Bailey et al., 2012 

 Astronomy and Space Science Concept Inventory 
 

Sadler et al., 2009 

 Force Concept Inventory 
 

Hestenes et al., 1992 

 Statistics Concept Inventory 
 

Steif & Dantzler, 2005 

 Lunar Phases Concept Inventory 
 

Lindell & Olsen, 2002 

 Digital Logic Concept Inventory 
 

Herman, 2011 

 
 

  

Chemistry Test to Identify Student Conceptualizations 
 

Voska & Heikkinen, 2000 

 The Mole Concept 
 

Krishnan & Howe, 1994 

 Chemistry Concepts Inventory 
 

Mulford & Robinson, 2002 

 ACID I 
 

McClary & Bretz, 2012 

 Enzyme–Substrate Interactions Concept Inventory 
 

Bretz & Linenberger, 2012 

 A Chemistry Concept Reasoning Test 
 

Cloonan & Hutchinson, 2011 

 Stereochemistry Concept Inventory 
 

Leontyev, 2016 

 Understanding Acids and Bases 
 

Cetin-Dindar & Geban, 2011 

Note. This table was adapted from (Leontyev, 2016) 
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which comprise a foundation for learning calculus. This review of the PCA will first address the 

development of the PCA instrument, particularly item development and validation. Second, 

published articles citing the Carlson et al. (2010) article will be reviewed to ascertain the extent 

to which psychometric analyses of PCA response data have been conducted and the general use 

of the PCA in published research.  

PCA Instrument Development 

 A thorough description of the PCA development was published by Carlson et al. (2010). 

They attributed their inspiration for developing the PCA to similar instruments from the domain 

of physics education research. The genesis of the PCA was original research on the essential 

knowledge and skills required for learning calculus. From this literature, Carlson et al. (2010) 

identified salient features of student reasoning abilities and mathematical understanding that 

contributed to students’ success in calculus. These features were classified into reasoning 

abilities (i.e., process view of functions, covariational reasoning, computational abilities) and 

understandings (i.e., the meaning of function concepts, the growth rate of function types, and 

function representations). The PCA Taxonomy (Appendix A) provides a detailed organization of 

these classifications. The development of the PCA Taxonomy served as the foundation for the 

development of the PCA items. 

 A four-phase approach was used for the development of the PCA. Phase 1 and 2 spanned 

ten years of original research to identify understandings and reasoning abilities required for 

students to be successful in beginning calculus courses. These phases were initiated by Carlson’s 

research on students’ understandings of functions (1995), in which an initial taxonomy was 

developed to categorize students’ function reasoning and understanding. The refinement and 

development of this taxonomy ultimately resulted in the PCA Taxonomy (Appendix A). This 
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taxonomy was a guide for developing the PCA instrument. The taxonomy, similar to a table of 

specifications, provides evidence that the test adequately samples the content of the domain of 

interest.  

The PCA Taxonomy highlights how each item was associated with reasoning ability, 

understanding, or a combination of the two. Very few items on the PCA are associated with a 

single construct from the taxonomy. However, all items measure a different combination of 

constructs from the taxonomy. Carlson et al. (2010) noted the complexities of the taxonomy, 

stating, “there are significant and complex interactions among the subcategories so that no one 

subcategory can be completely isolated” (p. 119). The initial set of 34 questions written 

following the PCA Taxonomy were open-ended questions used to further develop the PCA 

items. 

 Item refinement followed a process of administering the original 34 open-ended items to 

groups of students and conducting cognitive interviews. The analysis of the open-ended 

responses, coupled with the cognitive interviews, provided validity evidence to support the 

interpretation and use of scores from these items. These early activities also yielded a base of 

understanding for the students’ common misunderstandings and incorrect responses. This 

information was then used in the development of multiple-choice distractors.  

 The primary focus of Phase 3 was on the development and validation of multiple-choice 

items. Eight cycles of data collection and refinement took place using an initial set of 25 

multiple-choice PCA items. During this validation process, students were instructed to document 

their problem-solving processes. The documented student work was then used as data for 

qualitative analyses of student problem-solving processes. Researchers also conducted over 300 

interviews to understand the cognitive processes used in conjunction with each item. 
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Researchers’ understanding of these cognitive processes informed item revisions, including 

multiple-choice distractors, and revisions to the PCA Taxonomy. A quantitative distractor 

analysis was conducted to select and refine multiple-choice distractors by calculating the percent 

of students who selected each item response option. Options selected by less than 5% of the 

student population were revised or removed. These test development activities provided 

additional evidence for internal content validity.  

 The final version of the PCA included 25 multiple-choice items with five response 

options for each item. Many of the items were context-dependent items that relied on a figure or 

graph to provide the context in which the student is to think. Each graph or figure was unique to 

each item in all but one item (i.e., no item sets). Several items were presented as a story or a 

word problem that tasked students with solving mathematical equations in the context of a 

specific situation. Other items presented students with a mathematical equation to solve. 

 The fourth and final phase of the PCA development involved examining the meaning of 

PCA scores. Due to the complexities of the PCA Taxonomy and the relatively short length of the 

assessment, Carlson et al. (2010) noted: 

The PCA assess the composite effect of the identified reasoning abilities and 

understandings on students’ abilities. This approach is consistent with viewing the 

complex interactions among categories in the PCA Taxonomy as producing an emergent 

effect (Cohen et al., 1990) related to important precalculus reasoning abilities, rather than 

trying to establish independent uni-dimensional measures of underlying latent variables. 

(p. 137) 

The reporting of a single composite score limits the use and interpretation of PCA scores to a 

general measure of student reasoning and understanding. Carlson et al. (2010) further emphasize 
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that “it would not be appropriate to draw inferences about the abilities of an individual student 

relative to PCA subscores” (p. 137). 

 The primary source of evidence that the PCA measures the taxonomy constructs was 

supplied in the item development process and over 300 cognitive interviews. However, Carlson 

et al. (2010) also explored the relationship between PCA scores and course performance. They 

reported a correlation of 0.47 between students’ pretest PCA score and their final grade in first-

semester calculus. They also reported that 77% of students with a score higher than 12 received a 

passing grade of an A, B, or C in their first-semester calculus course. These relationships 

between the PCA and calculus course outcomes produced evidence that PCA scores may be 

considered for use as a general predictor of future success. However, the generality of the 

composite score limits the ability to provide targeted feedback systematically. Carlson et al. 

(2010) did not report the use of other statistical methods such as factor analysis or diagnostic 

classification modeling as methods used to investigate the potential for reporting subscores. If 

supported by empirical evidence, the reporting of PCA subscores has the potential to provide 

more targeted formative feedback to students and faculty. 

Publications Citing the PCA 

A citation analysis was conducted to understand how researchers have used the PCA in 

their academic work and assess the degree to which validity evidence of the internal structure has 

been investigated. The citation analysis began by identifying publications that cited the article 

describing the PCA development (Carlson et al., 2010).  

Several databases were used to identify citations including, Crossref, Web of Science, 

Scopus, and Google Scholar. At the time of writing this dissertation, a total of 82 unique 

citations were identified from sources ranging from peer-reviewed academic journals, records of 
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conference proceedings, and works published on the web. Each citing article was reviewed to 

determine the nature of their reference(s) to the Carlson et al. (2010) article. Each section 

containing a reference to the PCA was read, and the nature of the reference was classified. A full 

list of citations and classifications can be found in Appendix B. 

The citation analysis resulted in five general categories of references. The distribution of 

the 82 articles across these five categories is shown in Table 2. It is important to note that it was 

common for articles to have multiple references to the PCA, which allowed articles to be 

classified into multiple categories. The first category was Reference to Theory. An article was 

considered part of the Reference to Theory category if the author made one or more references to 

the theory discussed in the original PCA article. These references were either references to a 

specific theory or the more encompassing theory illustrated in the entire PCA Taxonomy. For 

example, Carlson et al. (2010) were referenced by LaRue (2017) as part of broad research on 

student’s understanding of functions, and Bannerjee (2017) referenced the broad reasoning and 

understandings needed for success in calculus.  

The second category was Instrument Reference. An article was categorized as an 

Instrument Reference if it made any reference to the PCA as an instrument. For example, Marfai 

(2016) referenced the PCA as an instrument when discussing a teacher's content mastery. Mejia-

Ramos et al. (2017) referenced the PCA as an instrument in their literature review of 

undergraduate mathematics education assessments and as an exemplar in assessment 

construction.  

The third category was the Type of Test category. Articles in the Type of Test category 

referenced the PCA as a type of test such as a test of conceptions or misconceptions. For 

example, Stanhope et al. (2017) wrote about developing a biological science quantitative 
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reasoning exam, which referenced the PCA as a type of test used to measure students’ reasoning 

abilities. M. Thomas and Lozano (2012) referenced the PCA as one of the many types of concept 

inventories.  

The fourth category was PCA Data. Articles were placed in the PCA Data category if 

data from the PCA was used. This category typically manifested itself when the PCA was used 

as an outcome measure in a research study. For example, Cousino (2013) used PCA data as the 

outcome variable in a series of Bayesian models. Cromley et al. (2017) used a subset of PCA 

items from the Understand Function Representations from the PCA Taxonomy. They used these 

items to investigate students’ abilities to coordinate multiple representations within the broader 

context of their investigation of the relationship between spatial skills and calculus proficiency.  

The fifth category was the Psychometric category. Articles appearing in this category 

made references to one or more psychometric properties of the PCA. Only one article referenced 

the psychometric properties of the PCA. Zahner et al. (2017) referenced the reliability of the 

Understand Functions Representations item subset. Although they reported a Cronbach alpha of 

0.692, they did not reference any analysis to test the assumptions needed for the appropriate use 

of Cronbach’s alpha.  

The extent to which Carlson et al. (2010) was referenced for the PCA Taxonomy's 

underlying theory speaks to the high quality of research done to establish the PCA's theoretical 

underpinnings. The references to the PCA as an exemplar in test development offered additional 

support to the quality of instrument development. However, this citation analysis revealed an 

unexpected finding that limited psychometric work had been conducted using PCA response 

data. Specifically, statistical modeling, such as factor analysis and diagnostic classification 

modeling, did not appear in any literature. The literature also lacked empirical studies that 
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investigated the instrument's dimensionality and the appropriateness of reporting a single 

composite score or multiple subscores.  

Table 2 

Distribution of Articles Across Reference Categories 

Theme Count of Articles Percent of Articles 

Reference to Theory 53 65% 

Instrument Reference 36 44% 

Type of Test 18 22% 

PCA Data 22 27% 

Psychometric 1 1% 

Note. The percent of articles in each category exceeds 100% due to single articles being 

classified into multiple categories.  

Confirmatory Factor Analysis  

Factor analysis (FA) is a type of analytical method with classes such as exploratory factor 

analysis (EFA) and confirmatory factor analysis (CFA) that can be used to evaluate latent 

constructs (i.e., factors) associated with a given set of observable variables. FA is commonly 

used in the development and evaluation of measurement instruments. FA may also be used to 

evaluate the dimensionality of a test empirically. Fabrigar and Wegener (2012) noted that more 

classical approaches to instrument development placed a heavy emphasis on using estimates of 

reliability (e.g., Cronbach’s alpha) to conclude that instruments were unidimensional. However, 

Fabrigar and Wegener (2012) emphasized the potential for reliability to be high even when 

scales are by nature multidimensional. Even when subscales are used, they noted that 

subscales might or might not tap distinct constructs or the constructs might not group in 

the way expected by the researcher. Fortunately, factor analysis provides a clear method 
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for testing the dimensionality of a set of items and determining which items appropriately 

belong together as part of the same scale or subscale. (p. 23) 

In addition to identifying which items are associated with a latent construct, FA can also evaluate 

the strength of the item to factor relationship. 

The application of FA methods for test development and evaluation often places the 

practitioner in a position to make several, sometimes subjective, decisions. The literature on FA 

is replete with recommendations to guide practitioners through the process of conducting FA. 

Several articles and books have been published to synthesize these recommendations to provide 

holistic guides to FA (Beavers et al., 2013; Brown, 2015; Fabrigar & Wegener, 2012; Gaskin & 

Happell, 2014; Harrington, 2009; Schmitt, 2011; Worthington & Whittaker, 2006).  

Confirmatory factor analysis (CFA) is a class of factor analytic methods often used for 

(a) psychometric evaluation of an instrument, (b) construct validation, (c) investigation of 

method effects, and (d) measurement invariance. CFA is considered under the larger umbrella of 

structural equation modeling (SEM) techniques and constitutes the measurement model (Brown, 

2015; Kline, 2011; Raykov & Marcoulides, 2006; Wang & Wang, 2012). CFA necessitates the 

specification of all aspects of the model before parameter estimation, including (a) the number of 

factors, (b) the item to factor relationships, and (c) error variances. For this reason, CFA is often 

used to test models based on theoretical hypotheses or hypothesized models derived from the 

data-driven EFA process (Haig, 2005).  

CFA model parameter estimation is a subset of the broader common factor model. 

Maximum likelihood and weighted least squares estimations and their associated variants 

comprise the more common CFA estimation methods (Wang & Wang, 2012). Specifying a CFA 

model is typically based on theory or prior research. Specifying a CFA model necessitates the 
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consideration of what parameters to include in the model estimation process and what to exclude 

from the model.  

Data Adequacy and Sampling 

In terms of the adequacy of the number of items necessary for estimating statistical 

models, MacCallum et al. (1999) recommended the final set of items contain at least three to four 

items per factor (construct) to support the data demands for estimating FA models adequately. 

However, in general, they stated that “it is desirable that the number of [items] be at least several 

times the number of factors” (1999, p. 90). The literature review by DiStefano and Hess (2005) 

echoed the recommendation for at least three variables per factor and reported a median of four 

items per factor from the 84 models they reviewed. They also noted that “a latent factor 

measured by one variable (e.g., one subscale) is not optimal and may lead to problems with 

estimation as well as with construct interpretation” (DiStefano & Hess, 2005, p. 227). It is 

important to note that these recommendations pertain to the final number of items associated 

with a factor and not the initial number of items created during the item writing process.  

 Two considerations for sampling in the context of FA include the sample characteristics 

and sample size. In the context of FA and test development, it is more desirable that the sample 

be representative of high and low scores rather than representative of other demographic 

variables (Worthington & Whittaker, 2006). Fabrigar and Wegener (2012) noted that a sample 

that is too narrowly drawn (e.g., only university students) might, depending on the construct 

being measured, produce a sample of data with a low variance, which could be problematic for 

FA estimation. They wrote (2012): 
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Reduced variance on the measured variables will then tend to attenuate the correlations 

among measured variables. Such attenuated correlations will, in turn, tend to attenuate 

the factor loadings and the correlations among factors. (p. 27) 

Worthington and Whittaker (2006) also caution that homogeneity in the sample scores may 

cause problems that may persist, even when dealing with large sample sizes.  

 Several recommendations have been given to guide practitioners in determining adequate 

sample sizes. Ratios ranging from five to ten participants for every item have been widely used 

for sample sizes under 300 participants (Tinsley & Tinsley, 1987). However, some research 

indicates that these ratios may be an oversimplification to determining the adequacy of sample 

sizes (Fabrigar & Wegener, 2012; Worthington & Whittaker, 2006). Item communalities have 

been found to be an important element in the adequacy of sample size. Worthington and 

Whittaker (2006) synthesized sample size recommendations to include the element of 

communalities. They offered four broad guidelines: 

(a) Sample sizes of at least 300 are generally sufficient in most cases, (b) sample sizes of 

150 to 200 are likely to be adequate with data sets containing communalities higher than 

.50 or with 10:1 items per factor with factor loadings at approximately |.4|, (c) smaller 

samples sizes may be adequate if all communalities are .60 or greater or with at least 4:1 

items per factor and factor loadings greater than |.6|, and (d) samples sizes less than 100 

or with fewer than 3:1 participant-to-item ratios are generally inadequate (p. 817). 

Brown (2015) noted that the use of dichotomous items necessitates a larger sample size than the 

use of continuous data. According to Flora and Curran (2004), the need for drastically larger 

sample sizes of dichotomous items can be reduced using a robust WLS estimator (e.g., 

WLSMV). However, they recommend caution when estimating large models with small sample 
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sizes as they found such circumstances produced slightly biased test statistics and standard 

errors.  

 Considerations of both sample characteristics and sample size are made to guard against 

overfitting a statistical model and limiting the generalizability of findings. A cross-validation 

sample may also be used to protect against an overfitted model. DeVellis (2012) stated that 

“replicating a factor analytic solution on a separate sample may be the best means of 

demonstrating its generalizability” (p.158). Floyd and Widaman (1995) recommended that the 

cross-validation sample be randomly drawn from a larger population to help ensure the 

generalizability between model development samples and the cross-validation sample. This 

process permits the comparison of model fit from the sample used to develop the model with a 

presumably equivalent sample that was not used in the model development process. The 

obtainment of similar model fit indices with both samples provides evidence for the 

generalizability of the model. Floyd and Widaman also noted that the process of cross-validation 

could be used to test the generalizability from the sample used for model generation and a 

sample with differing characteristics (e.g., clinical and non-clinical samples). However, the 

evaluation of known differences between groups is generally reserved for analyses of 

measurement invariance and is an essential part of developing scales for use with multiple 

groups (Borsboom et al., 2008; Guenole & Brown, 2014; Lubke et al., 2003). 

Dichotomous Items 

 Estimating FA models with dichotomous data requires specialized estimation procedures 

to account for the violation of the assumptions common to many estimation procedures. Brown 

(2015) reviewed several issues that arise when conducting FA with dichotomous data. He noted 

that the violation of the approximately interval-level data assumption has consequences such as 
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(a) attenuated estimates, (b) factors representing item difficulty rather than latent constructs, (c) 

incorrect parameter estimates, and (d) inconsistent test statistics and standard errors. Brown and 

others (Wang & Wang, 2012) recommended using the WLSMV Mplus estimation procedure 

(Muthén & Muthén, 2017). The WLSMV estimator uses a latent response variable framework to 

estimate a normally distributed continuous latent variable (y*) underlying the observed 

dichotomous variable. A threshold is estimated, which links the amount of the latent variable y* 

needed to respond positively to the item (y = 1). Restated, the threshold for a dichotomous 

variable is the point on y* where y = 1 if the threshold is exceeded (similar to a 2PL IRT model) 

(Brown, 2015, p. 355; Wang & Wang, 2012, p. 68). Brown also noted that the WLSMV 

estimator's use causes the observed variances of the items not to be analyzed. Mplus provides the 

delta and theta parameterization methods for scaling. The delta parameterization fixes the item 

variances to 1.0, which causes the residual variances to be unidentified.  

Thus the measurement errors (θ) of the CFA model with [dichotomous] indicators are not 

free parameters, but instead reflect the remainder of 1 minus the product of the squared 

factor loading and factor variance (or simply 1 minus the squared completely 

standardized factor loading). (Brown, 2015, p. 356) 

With the theta parameterization, the item residual variances are fixed to unity. Brown (2015) 

explains: 

the variances of y* are computed as the sum of the residual variance plus the variance 

due to the latent variable (where θ = 1 for all indicators)…this method is useful when the 

structure of the residual variances may be an important aspect of the measurement model 

(e.g., to obtain fit diagnostic information regarding the possible presence of method 

effects). (p. 356) 
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When appropriately accounted for, data from dichotomously scored items can be subjected to 

psychometric analysis using FA techniques to determine an instrument's dimensionality.  

Model Identification  

An identified CFA model is a model in which it is mathematically possible to obtain a 

unique estimate for each parameter in the model. That is, the number of freely estimated 

parameters does not exceed the amount of information provided by the data. A model is 

considered under-identified when the number of parameters to be estimated exceeds the amount 

of available information from the data. An under-identified model cannot be estimated and will 

fail to converge upon a solution for estimating parameters. A model is considered to be just-

identified when the number of freely estimated parameters equals the amount of available 

information. A just-identified model only allows for a single solution of parameter estimates that 

perfectly fit the data. Although a just-identified model can be estimated, the results of a just-

identified model have limited practical utility because their perfect fit does not allow for model 

comparisons. An over-identified model is when the number of freely estimated parameters is less 

than the amount of information provided by the data. Specifying an over-identified model holds 

more practical utility as it permits the use of many fit statistics and indices, which can be used 

for model comparison and validation. A single-factor model requires at least three items with 

uncorrelated measurement errors to be identified. For models with multiple factors, having three 

items per factor is a general recommendation to achieve an over-identified model (Brown, 2015; 

DiStefano & Hess, 2005; Wang & Wang, 2012). 

Model Evaluation 

Models can be broadly defined as an abstraction of reality or a simplified representation 

of a phenomenon. As a simplification of reality, models are not a perfect representation and 
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always contain a degree of error. As previously alluded to, model comparison is a key 

component to factor analysis and particularly CFA. Generally, model comparison is an 

evaluative endeavor that seeks to draw on multiple sources of evidence to judge the quality of a 

model and determine the degree to which model predicted variances equal observed variances. In 

many instances, competing models are estimated and evaluated to determine which model (a) has 

the least amount of error, and (b) presents the most parsimonious representation of reality. Model 

fit statistics and indices are often used for model comparison. Both relative and absolute fit 

indices have been used to compare CFA models. These methods are used to evaluate the models 

as a whole. Some of these methods take into account the number of parameters specified in the 

model compared to the possible number of parameters. In this way, these methods of model 

comparison penalize an overspecified model. Brown (2015) recommended that researchers 

consider and report at least one indicator of model fit from each of these categories. West et al. 

(2012) recommended using CFI, TLI, SRMR, and RMSEA indicators.  

Absolute model fit indices assess how well the relationships specified CFA model, as 

represented in the model implied covariance matrix (Σ), reproduce the relationships found in the 

data, as represented in the observed covariance matrix (S) (Brown, 2015). The chi-square 

goodness-of-fit statistic (χ2) (Joreskog, 1969) was the first model fit index used to evaluate 

absolute model fit. The χ2 statistic tests the difference between the model implied covariance 

matrix (Σ) and the observed covariance matrix (S), where a statistically significant result implies 

a statistically significant difference between the two matrices. As such, a statistically significant 

χ2 result is typically considered undesirable (Wang & Wang, 2012), indicating that the model 

does not match the data. Although many researchers report χ2, this statistic has several 

limitations that reduce its utility to applied researchers. These limitations include: 
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• High sensitivity to sample size; larger sample sizes are more likely to produce a 

statistically significant χ2 

• Fitting functions often produce distributions that do now follow the χ2 distribution due to 

small sample size or violations of multivariate normality 

• χ2 increases with the number of variables included in the model 

• The assumption that S = Σ may be too strict and reject solutions where an acceptable 

approximation has been found 

(Brown, 2015; Wang & Wang, 2012) 

 Many scholars recommend the use and reporting of the standardized root mean square 

residual (SRMR) and the root mean square error of approximation (RMSEA) as indicators of 

absolute model fit (Bentler, 2007; West et al., 2012; Worthington & Whittaker, 2006). Brown 

described the SRMR conceptually as “the average discrepancy between the correlations observed 

in the input matrix and the correlations predicted by the model” (2015, p. 70). Hu and Bentler 

(1999) suggested that an SRMR value of < .08 would be considered a good fit, while others 

consider this to be a less demanding standard (Kline, 2011). Yu (2002) found that the SRMR did 

not perform well in simulation studies when indicators were dichotomous. Yu recommended 

using the weighted root mean square residual (WRMR) for dichotomous items with a cutoff 

value of ≤ 1.0, indicating a good model fit.  

 The root mean square error of approximation (RMSEA) represents the degree of data-to-

model discrepancy and is sometimes classified as a parsimony correction index (Brown, 2015) 

because RMSEA values are adjusted based on the degrees of freedom present in the model. That 

is, more parsimonious models (i.e., more degrees of freedom) are expected to have lower 

RMSEA values. However, Kline (2011) noted that models with more degrees of freedom are not 
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inherently favored over those with less because the parsimony correction diminishes with 

increased sample size. RMSEA values range from 0 to 1, where values closer to zero are 

indicative of model-data fit. Some of the more widely cited guidelines for evaluating RMSEA 

values are those set forth by Browne and Cudeck (1993) and Hu and Bentler (1999). Browne and 

Cudeck (1993) suggested that an RMSEA value of 0 = perfect fit; < 0.05 = close fit; 0.05-0.08 = 

fair fit; 0.08-0.10 = mediocre fit; and > 0.10 = poor fit. Hu and Bentler (1999) suggested using 

RMSEA values < 0.06 to indicate a good model fit.  

 Relative model fit indices, sometimes referred to as comparative fit indices, describe the 

relative improvement of the specified model to a more restricted baseline model, which often is a 

null model assuming no covariance among all indicators (Hu & Bentler, 1998). Values for these 

indices typically range from 0 to 1, where values closer to one are indicative of better model-data 

fit. The Comparative Fit Index (CFI) (Bentler, 1990) is conceptually the ratio of improvement 

moving from the null model to the specified model. CFI values “close to 0.95” (Hu & Bentler, 

1999, p. 27) are considered a good fit. The Tucker-Lewis Index (TLI) (Tucker & Lewis, 1973) is 

another widely used relative model fit index. One way in which the TLI differs from the CFI is 

by incorporating a penalty for model complexity. TLI values close to 0.95 are also considered an 

indicator of a good model fit (Hu & Bentler, 1999). Wang and Wang (2012) noted that a TLI 

value < 0.90 is indicative of a model that needs to be respecified.  

 Information criteria indices are commonly used to compare two specified models, 

particularly non-nested models. These indices include but are not limited to the Akaike 

Information Criterion (AIC) (Akaike, 1974, 1987), Bayes Information Criterion (BIC) (Schwarz, 

1978), and the sample size adjusted BIC (ABIC) (Sclove, 1987). Each of these indices is a 

parsimony corrected fit index. Lower values of AIC, BIC, and ABIC are indicative of a good 
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model fit. Therefore, when using these indices to compare models, the model with the smaller 

value would be considered the better fitting model.  

 As previously mentioned, the evaluative nature of examining CFA results necessitates 

considering multiple sources of evidence to judge the model's quality. Researchers who focus on 

a single piece of evidence run the risk of misjudging the model's quality. Even while considering 

multiple sources of evidence, Marsh et al. (2004) counseled researchers not to interpret 

guidelines, or rules of thumb, in the literature as golden rules. Wang and Wang (2012) further 

cautioned that a model with strong evidence from fit indices does not indisputably conclude that 

it is the correct model. They noted that “the model evaluation is not entirely a statistical matter. 

It should also be based on sound theory and empirical findings. If a model makes no substantive 

sense, it is not justified even if it statistically fits the data very well” (Wang & Wang, 2012, p. 

22).  

Model Comparison and Revision 

 The estimation of a CFA model is less commonly used in a strictly confirmatory 

approach where the specified model structure is categorically accepted or rejected. In these 

situations, modifications are not made to the model. More frequently, modifications to CFA 

models are undertaken to improve the model parsimony and interpretation and improve model 

fit. Initial CFA models based on theory or empirical findings often do not fit the data very well. 

These initial ill-fitting models are often used as the starting point for revisions based on the 

initial model parameter estimates. Raykov and Marcoulides (2006) emphasized this point: 

The starting point of CFA is a very demanding one, requiring that the complete details of 

a proposed model be specified before it is fitted to the data. Unfortunately, in many 
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substantive areas this may be too strong a requirement since theories are often poorly 

developed or even nonexistent. (p. 117) 

Common model revisions include (a) the number of factors, (b) item to factor 

relationships, and (c) modifications to the error theory. Kline (2011) noted that model revision is 

often more challenging than the initial model specification because of the vast number of 

changes that could be made to the model. A methodical approach based on substantive evidence 

should guide the model revision process. MacCallum (2003) cautioned against the practice of 

modifying a model to the point of overspecifying the model. He recommended that model 

modification “focus on identifying and correcting gross misspecification” (2003, p. 129). 

MacCallum further emphasized the importance of cross-validation. 

Of critical importance is that when a model is modified and eventually found to fit the 

data well, that model must be validated on new data. That is, a model cannot be 

supported by a finding of good fit to data when that model has been modified so as to 

improve its fit to that same data. (p. 129) 

According to the review of CFA reporting practices by Jackson et al. (2009), modifications are 

often either unreported or provide limited to no details regarding the nature of modifications. 

They recommended clearly distinguishing between proposed or theoretical models and models 

resulting from post hoc modifications. They also recommended that the post hoc modification 

process be well documented. 

 Modifications to the number of factors in a model should be rare when the initial CFA 

model is based on substantive theory and empirical data (e.g., EFA modeling). Modifying the 

number of factors is primarily undertaken to resolve instances where higher-order factors or the 

collapsing of multiple factors are merited and where correlated errors (i.e., residuals) could better 
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account for an item to factor relationships (Brown, 2015). Factor correlations can be used to 

provide evidence to support the extent to which multiple factors should be reduced to fewer 

factors. It is generally expected that factors be at least moderately correlated. However, large 

correlations that exceed .85 are often problematic (Brown, 2015). These high correlations, 

combined with substantive theory, could provide evidence that the model should be modified to 

collapse the highly correlated factors into a single factor or that a higher-order factor is specified 

to account for the relationship between factors.  

Additional modifications to the number of factors in a model could be justified through a 

simultaneous modification to the model error theory. That is, the estimation of a correlation 

between item error parameters could be added to a model to account for shared item variance 

while permitting items to load on separate factors. This practice is commonly applied to modify 

the number of factors while accounting for measurement method effects (Harrington, 2009). 

 Modifications to item factor relationships can provide another potential for model 

modifications. Low factor loadings may indicate that the item does not measure the factor well. 

Such items could be considered for revision or removal from the model. Items loading on 

multiple factors where one loading is relatively higher than another may indicate the model 

should be adjusted to associate the item with a single factor.  

 Standardized errors/residuals can be conceptually described as the “number of standard 

deviations by which the fitted residuals differ from the zero-value residuals associated with a 

perfectly fitting model” (Brown, 2015, p. 98). The evaluation of the absolute value of 

standardized residuals can help identify localized areas of model strain. Positive standardized 

residuals may indicate an underspecified model, while negative values indicate an overspecified 

model. Raykov and Marcoulides (2006) noted that standardized residuals less than an absolute 
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value of 2 are not a cause for concern. However, the size of standardized residuals tends to be 

inversely related to sample size. Therefore, some researchers recommended a larger |2.58| 

guideline (Harrington, 2009; Kline, 2011; Wang & Wang, 2012). Raykov and Marcoulides 

(2006) also noted that the standardized residual distribution shape could be useful for evaluating 

model performance. That is, a uniform distribution would suggest that the model is performing 

equally across all items. At the same time, more isolated cases of large absolute standardized 

residuals would be indicative of a localized area of model strain.  

 The identification of large standardized residuals can provide evidence for the 

modification to the model error theory. Models can be modified by specifying the model to 

estimate a correlation between item error parameters. Choosing which correlated error terms to 

add to the model is an evaluative process that, like all model revisions, should be based on 

substantive information. Positively and negatively worded items and other item characteristics 

such as common item stems or wording can cause method effects (i.e., a common systematic 

error between items caused by common item characteristics). Correlated errors can be added to 

the model to account for hypothesized method effects. Modification indices can also be used to 

identify correlations among item errors. Wang and Wang (2012) emphasized that the addition of 

correlated errors to any model should be “substantially meaningful” (p. 40) and not added solely 

based on modification indices.  

 The modification index can be used as a tool to identify potential model revisions. A 

modification index value is the estimated reduction in the model’s chi-square for a given model 

modification. A modification index of 3.84 with 1 df would constitute a statistically significant 

change. Considering the chi-square test's limitations, the relative size of the modification index is 

often given more consideration than statistical significance (Brown, 2015; Raykov & 
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Marcoulides, 2006; Wang & Wang, 2012). It is important to note that modification indices assess 

the potential effect of freely estimating a currently fixed model parameter. The omission of key 

elements from the model may contribute to poor model fit that modification indices will not 

detect. As Brown (2015) wrote: 

Modification indices can point to problems with the model that are not the real source of 

misfit. Again, this underscores the importance of an explicit substantive basis (both 

conceptual and empirical) for model (re)specification. (p. 142) 

 Using the modification index and other parameters as a guide to modify a model is often 

referred to as a model specification search. MacCallum et al. (1992) noted several limitations to 

conducting a data-driven model specification search. The results of their research highlighted the 

importance of cross-validation samples when conducting a model specification search. They 

found that sequential specification searches can be highly unstable with smaller sample sizes. 

They wrote: 

when a sequential specification search is conducted in practice using data from a single 

sample, researchers cannot have great confidence that the specific model modifications 

would generalize beyond that sample. Unless sample size is very large, modifications 

may be quite idiosyncratic to that particular sample. (MacCallum et al, 1992, p. 501) 

The inconsistency of the modification searches to generalize to different populations prompted 

MacCallum et al. (1992) to recommend that modification searches not be conducted when a 

model fits well. If a model specification search is to be conducted, it should have a theoretical 

underpinning and should not constitute major model changes with one model change 

investigated at a time (Brown, 2015; Kline, 2011; Raykov & Marcoulides, 2006; Wang & Wang, 

2012). 
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Diagnostic Classification Models (DCMs) 

 Diagnostic classification models (DCMs) are a class of statistical models that share many 

of the same underlying computational foundations of factor analysis (Rupp & Templin, 2008b). 

While factor analysis is often used to investigate an instrument's dimensionality, it can also be 

used to provide a score for each dimension in the model. However, many of the inherent 

characteristics of factor analysis make it difficult to interpret and report these scores to students. 

The well-established research base devoted to DCMs has sought to develop a modeling 

technique that overcomes the inherent challenges associated with reporting factor analysis 

scores.  

 Applying DCMs to multidimensional assessments provides several advantages over 

many traditional assessment practices. Primarily, students can be provided with a mastery profile 

that communicates diagnostic information for each student about the mastery of the fine-grained 

dimensions of the assessment. This approach differs from a more traditional assessment 

approach where students are given a single total test score without further information on their 

mastery of specific skills tested. More traditional assessment approaches require students and 

instructors to review individual item responses and intuit the strengths, weaknesses, and general 

concept mastery. This process can be both difficult and time-consuming. The application of 

DCMs seeks to overcome these difficulties by providing a straightforward approach to assess 

students and clearly communicate results.  

Several specific advantages of DCMs noted in the literature are (a) the simultaneous 

measurement of multiple attributes (i.e., multidimensionality), (b) estimation of student mastery 

profiles, (c) opportunities for more complex item structures, (d) higher reliability with fewer 

items, and (e) fewer data demands. In addition to summative assessment, DCMs have great 
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potential for providing formative feedback on student skill mastery. These formative results may 

be used to inform educational interventions. For example, diagnostic assessments may be 

administered before instruction begins to help identify students’ strengths and weaknesses. 

Students may then be provided with differentiated learning resources that have the potential to 

augment the teaching and learning process. The diagnostic assessment results may also support 

students’ self-regulated learning by more clearly communicating their current understanding and 

providing actionable information to support students in making study plans.  

General Research on Diagnostic Classification Models 

Research and applications of diagnostic assessments in various forms began to be 

published in the early 1980s (Tatsuoka, 1983). However, a strong resurgence of interest occurred 

in the late 1990s and has continued until the present time. A variety of statistical models have 

been presented in the literature (Rupp et al., 2010). 

Few comprehensive critical literature reviews have been published in the emerging field 

of diagnostic assessments and their statistical counterparts – Diagnostic Classification Models 

(DCMs). To the best of the author’s knowledge, the review by Rupp and Templin (2008b) 

constituted the first comprehensive review of the DCM literature. The main objective of this 

review was to:  

raise awareness about the unique characteristics of DCM vis-à-vis popular scaling 

alternatives for contexts that call for the analysis of data from diagnostic assessments in a 

certain discipline. It also serves to address the resulting advantages and disadvantages of 

DCM by focusing on statistical as well as substantive considerations. (p. 220)  

It appears that Rupp and Templin’s review did much to focus the academic discourse on DCMs. 

Their review puts a heavy emphasis on informing readers of the potential advantages and 
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disadvantages of the various statistical models falling under the broader DCM framework and 

the potential for future research – which was much needed at the time. Since that time, a plethora 

of methodological and a small amount of applied research has been conducted to develop the 

potentialities of DCMs further.  

In their literature review, Ravand and Baghaei (2019) provided an overview of recent 

developments and practical issues in the DCM literature. They argued that although a 

considerable amount of DCM research has been published, applied DCM research has been 

stifled by:  

(1) their lack of accessibility to a broad audience interested in their application, (2) fast 

growth of the models which makes it hard for practitioners to keep up with the latest 

developments, and (3) unresolved issues such as sample size in DCMs, which hinder 

their applications (p. 3) 

They also noted that “to keep up with the latest developments in DCMs, interested readers must 

review many articles in diverse sets of journals” (p. 3).  

To help make the DCM literature more accessible, Ravand and Baghaei (2019) reviewed 

various DCMs (Table 3). Several general DCMs have been proposed, including the General 

Diagnostic Model (GDM; von Davier, 2008), Log-linear Cognitive Diagnosis Model (LCDM; 

Henson et al., 2009), and the Generalized DINA (G-DINA; de la Torre, 2011). These general, or 

saturated, DCMs share many of the same characteristics. More restrictive DCMs can be 

considered special cases of these more general models (Rupp et al., 2010; von Davier, 2014). As 

such, the emerging practice is an iterative process of (a) fitting a fully saturated model, (b) 

evaluating the model, (c) fitting rival models, and (d) reevaluating. The flexibility of general 
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DCMs affords the ability for individual assessment items to take on unique modeling 

characteristics as opposed to forcing all items to use an identical parameterization. 

More restrictive DCMs impose strict assumptions about the item to attribute 

relationships. For example, noncompensatory DCMs assume that the probability of a correct 

response is conditional on mastering all attributes associated with an item. That is, 

noncompensatory DCMs do not permit the strength of one attribute to compensate for the 

weakness of another attribute in the estimation of the probability of a correct response. Examples 

of noncompensatory models include the Rule Space Model (RSM; Tatsuoka, 1983), 

Deterministic Input Noisy "And" gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001), Noisy 

Input Deterministic "And" gate (NIDA; Junker & Sijtsma, 2001), and the Noncompensatory 

Reparametrized Unified Model (NC-RUM; Hartz, 2002). In contrast, compensatory DCMs do 

not assume that a respondent must master all attributes associated with an item to obtain a high 

probability of a correct response. Compensatory models permit the mastery of one attribute to 

compensate for not mastering another attribute. Examples of compensatory models include the 

Deterministic Inputs, Noisy, “Or” gate (DINO; Templin & Henson, 2006), Noisy Inputs, 

Deterministic “Or” gate (NIDO; Templin & Henson, 2006), and the Compensatory 

Reparametrized Unified Model (C-RUM; Hartz, 2002). Due to the general nature of the LCDM, 

attributes are permitted to function as both compensatory and noncompensatory based on the 

nature of the response data. 

Q-Matrices Design 

 Results obtained using DCMs are only as good as the diagnostic assessment's underlying 

theory due to an explicit linkage between the assessment items and a domain-specific theory. 
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Table 3 

Categorization of Common Diagnostic Classification Models 

Type Examples 
Disjunctive Deterministic-input, noisy-or-gate model (DINO) 

Noisy input, deterministic-or-gate (NIDO) 
 

Conjunctive Deterministic-input, noisy-and-gate model (DINA) 
Noisy inputs, deterministic-and-gate (NIDA) 
 

Additive Additive CDM (ACDM)  
Compensatory reparametrized unified model (C-RUM) 
Noncompensatory reparametrized unified model (NC-RUM) 
Linear logistic model (LLM) 
 

Hierarchical Hierarchical DINA (HO-DINA) model 
Hierarchical diagnostic classification model (HDCM) 
 

General (Disjunctive, 
Conjunctive, and 
Additive) 

General diagnostic model (GDM) 
Log-linear CDM (LCDM)  
Generalized DINA (G-DINA) 
 

Note. This table was adapted from Ravand and Baghaei (2019, p. 6). 

Therefore, it constitutes one of the most critical steps in DCM development (Gorin, 2009). These 

theoretical linkages must occur before the estimation of the statistical model and are specified 

using a Q-matrix. The process for developing a Q-matrix first begins by using domain-specific 

theories to identify and define salient attributes or concepts for which the assessment will be 

used to classify respondents as masters or non-masters. Second, items that presume to measure 

the theory-based attributes are developed. The Q-matrix represents the structural item to attribute 

relationship. As presented in Table 4, a Q-matrix is typically constructed with attributes being 

represented by columns and individual items by rows. Items that measure a given attribute are 

indicated by a 1 in the matrix. The Q-matrix specification result is a different vector q for each 

item i and attribute A such that qi = [qi1, qi2, …, qiA]. For example, item 2 in Table 4 has a q 

vector q2 = [1,0,1], indicating that this item measures Attribute 1 and Attribute 3, but not 
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Attribute 2. Items presumed to measure a single attribute are said to have a simple attribute 

structure (e.g., item 1). Items presumed to measure more than one attribute are said to have a 

complex attribute structure (e.g., item 2). The Q-matrix is used in a confirmatory nature during 

the estimation of the DCM. This process is similar to using the factor-pattern matrix in 

confirmatory factor analysis (Bradshaw, 2017; Templin & Bradshaw, 2013). 

Table 4 

Sample Q-Matrix 

Item Attribute 1 Attribute 2 Attribute 3 
1 1 0 0 
2 1 0 1 
3 0 1 0 
4 0 1 1 
5 0 0 1 

 
 Kunina-Habenicht et al. (2012) emphasized the importance of Q-matrix specification in 

the process of applying DCMs. They wrote: 

The development or derivation of one or several competing Q-matrices is a critical (and 

potentially the most challenging) step in the analysis [of DCMs]. Any change in the Q-

matrix redefines, at least slightly, the substantive interpretations of the set of user-

specified attributes, even if their labels remain the same. Different Q-matrix 

specifications reflect different theoretical hypotheses about the structure of 

the diagnostic assessment. (p. 60) 

The misspecification of the Q-matrix can have several adverse effects on model estimation 

quality (Kunina-Habenicht et al., 2012; Rupp & Templin, 2008a). Misspecification of the Q-

matrix can appear in the form of an under-specification (i.e., omitting correct item to attribute 

associations) or over-specification (i.e., including an incorrect item to attribute associations).  



www.manaraa.com

39 

Q-matrix design refers to the number of attributes, items, and the prevalence of simple 

and complex item structures. Simulation studies have shown that a Q-matrix design with one or 

more simple structure items resulted in higher classification accuracy. Conversely, increasing the 

number of complex items or complexity of items (i.e., the number of attributes measured by that 

item) decreased classification accuracy (Madison & Bradshaw, 2015). Madison and Bradshaw’s 

(2015) simulation studies also revealed that DCMs often struggle to isolate distinct attributes 

when they are always measured in conjunction with another attribute. They recommended 

combining attributes that are always measured together. The issue of item complexity introduces 

the need to balance the specificity of attributes and the Q-matrix design complexity. Increased 

specificity is desirable from a diagnostic perspective, but increased specificity is potentially 

undesirable from a modeling standpoint because of the added model complexity. Ravand and 

Baghaei (2019, p. 16) noted that most DCM studies specify up to five attributes.  

Several different methods have been explored in the literature to validate Q-matrix design 

(Y. Chen et al., 2015; Chiu, 2013; de la Torre, 2008; DeCarlo, 2012; J. Liu et al., 2013). 

However, many of these methods are limited to being implemented within restricted DCMs, such 

as the DINA model. The inconclusive nature of the literature on Q-matrix validation necessitates 

estimating and evaluating multiple competing Q-matrix structures in applied DCM work. It is 

important to note that part of this evaluative process should include considering the 

interpretability of attributes and, subsequently, the classifications produced by the model (Lei & 

Li, 2016). 

Log-Linear Cognitive Diagnosis Model (LCDM) Parameterization 

The general purpose of DCMs is to estimate the probability of a correct response based 

on the mastery of predetermined attributes. The LCDM (Henson et al., 2009) is a general DCM 
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parameterized as a linear model akin to an ANOVA. The general form of the LDCM can fit an 

infinite number of attributes and accommodate an item that measures any combination of these 

attributes defined as: 

𝑃𝑃(𝑌𝑌𝑟𝑟𝑟𝑟 = 1|𝛼𝛼𝑟𝑟) =
exp�𝜆𝜆𝑖𝑖

𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝛼𝛼𝑟𝑟)� 

1+exp�𝜆𝜆𝑖𝑖
𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝛼𝛼𝑟𝑟)�

 . (1) 

This general form of the LCDM can be simplified into unique linear equations to model the log-

odds of a correct response conditional on a respondent’s mastery of attributes associated with 

that item. Bradshaw (2017) provided an example of how an item response function for an item 

measuring two attributes (𝛼𝛼𝑎𝑎, 𝛼𝛼𝑏𝑏) can be derived from the general form of the LCDM. The log-

odds of a correct response is modeled conditional on the respondent’s attribute mastery profile 

as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑌𝑌𝑟𝑟𝑟𝑟 = 1|𝛼𝛼𝑟𝑟) =  𝜆𝜆𝑖𝑖0 + 𝜆𝜆𝑖𝑖1(𝑎𝑎)(𝛼𝛼𝑟𝑟𝑟𝑟) + 𝜆𝜆𝑖𝑖1(𝑏𝑏)(𝛼𝛼𝑟𝑟𝑟𝑟) + 𝜆𝜆𝑖𝑖2(𝑎𝑎∗𝑏𝑏)(𝛼𝛼𝑟𝑟𝑟𝑟)(𝛼𝛼𝑟𝑟𝑟𝑟). (2) 

The intercept for the linear equation is noted as 𝜆𝜆𝑖𝑖0 and represents the log-odds of a correct 

response for respondents who have not mastered attribute a or b. The main effects for having 

mastered an attribute are noted by 𝜆𝜆𝑖𝑖1(𝑎𝑎) and 𝜆𝜆𝑖𝑖1(𝑏𝑏) and represent the increase in the log-odds of a 

correct response given the mastery of the respective attribute. The two-way interaction is noted 

by 𝜆𝜆𝑖𝑖2(𝑎𝑎∗𝑏𝑏) and represent the increase in the log-odds of a correct response given the mastery of 

both attributes a and b. 

The LCDM permits the estimation of a fully saturated statistical model (i.e., a model 

which contains the maximum possible number of parameters). The saturated LCDM subsumes 

many of the more restrictive DCMs found in the literature. Fitting a saturated model enables 

researchers to evaluate the nature of the relationship between items and attributes to help curtail 
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the pitfall of model misspecification. However, the LCDM is often constrained by removing 

non-significant item parameters for the sake of parsimony.  

Model Evaluation of Diagnostic Classification Models 

 Several methods have been developed to evaluate the quality of DCMs of which model 

fit plays a central role. Like other statistical models, the model's usefulness hinges on the degree 

to which the model fits the data. Evaluation of model fit for DCMs includes estimates of both 

absolute and relative model fit. 

Absolute model fit refers to the extent to which the model, as a whole, fits the data. 

Several methods for assessing absolute fit have been researched. Templin and Henson (2006) 

wrote about a Monte Carlo resampling technique for estimating model fit while others (Sinharay 

& Almond, 2007) have proposed a Bayesian posterior predictive model checking. However, Y. 

Liu et al. (2016) noted that these two approaches to model fit are more challenging to estimate in 

terms of time and computational requirements. Hansen et al. (2016) researched the 

appropriateness of applying the limited-information M2 fit statistic (Maydeu-Olivares & Joe, 

2006) to DCMs. Hansen et al. (2016) used simulation studies to investigate the M2 statistic’s 

sensitivity to detect testlet effects, misspecification of higher-order structures, Q-matrix 

misspecification, and misspecification of DCM (C-RUM or DINA). They found the M2 statistic 

was sensitive to detecting underspecification and over-specification of attributes in the Q-matrix 

and the omission of an attribute from the Q-matrix. However, the M2 statistic was not sensitive 

to the detection of an extraneous attribute (i.e., adding an irrelevant attribute to the Q-matrix). 

Jurich (2015) noted similar findings when applying the M2 statistic specifically to the LCDM.  

Relative model fit statistics are used to compare model fit between two or more models. 

Several commonly used relative model fit statistics can be applied to DCMs including, Akaike 
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Information Criterion (AIC; Akaike, 1974, 1987), Bayesian Information Criterion (BIC; 

Schwarz, 1978), and the -2 log-likelihood (-2LL) used to test the difference between two nested 

models. Sen and Bradshaw (2017) researched the AIC, BIC, and SABIC performance in the 

context of the LCDM. They found that AIC, BIC, and SABIC’s ability to identify the true 

simulated model depended largely on item quality and base rates. Item quality is defined as the 

discrimination power of the item. They wrote:  

[H]igher quality items have greater item discrimination, meaning that the items are better 

at separating masters and nonmasters of the measured attributes. For DCMs, item 

discrimination is defined as the difference in the probability of a correct response for two 

groups of students (Sen & Bradshaw, 2017, p. 9). 

Simple structure items (i.e., items measuring a single attribute) were simulated to have medium 

item quality with a discrimination value of 0.60 and 0.64 for high-quality items. Complex 

structure items (i.e., items measuring multiple attributes) had discrimination values simulated at 

0.60 for medium-quality items and 0.83 for high-quality items. The differences in item quality 

can also be described in terms of item parameters. Simple structure items had a main effect of 

2.84 for medium-quality items and 3.0 for high-quality items. Complex structure items had main 

effects of 1.3 and a two-way interaction of 0.24 for medium-quality items. High-quality items 

had a main effect of 2.0 and a two-way interaction of 1.0.  

 The literature on model fit indices for DCMs is currently inconclusive. Several model fit 

indices have been researched in simulation studies with mixed results. In their review, Ravand 

and Baghaei (2019) reported several fit indices found in the literature (Table 5). There are 

currently no research-based guidelines for using these fit indices, which makes their application 

more difficult for practitioners. Another limiting factor to the evaluation of model fit is the 
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availability of software with the capacity to compute model fit indices. As such, several fit 

indices and multiple types of fit should be used to provide multiple sources of evidence for the 

quality of model fit (Sessoms & Henson, 2018).  

Table 5 

Model Fit Indices Used With DCMs 

Index Description References 
X2 Chi-square test statistic W.-H. Chen & Thissen, 1997 

Rupp et al., 2010 
 

MADcor Mean absolute difference for the 
item-pair correlations 
 

DiBello et al., 2007 
 

MADRES Mean residual covariance 
 

McDonald & Mok, 1995 
 

Q3 Measure of local dependence 
 

Yen, 1984 
 

RMSEA Root mean square error 
 

Browne & Cudeck, 1993 

SRMSR Standardized root mean squared 
residual 

Maydeu-Olivares, 2013 
 

 
Diagnostic Classification Models in Practice 

The review of DCM literature by Sessoms and Henson (2018) captures the developments 

that have taken place in applying the DCM literature to practical applications. They reviewed 36 

papers published since 2009 in 27 various peer-reviewed journals. Of the constructs being 

measured, 47% were math, and 39% were reading (Sessoms & Henson, 2018, p. 5). Other 

constructs did not appear in more than one study. This lack of diversity highlights the unproven 

ability of DCMs to be directly applicable to a wide variety of content areas. The number of 

attributes measured may serve as a proxy for the complexity of DCM. In their review, Sessoms 

and Henson (2018, p. 6) found that the number of attributes measured ranged from four to 

twenty-three (M = 8.19, median = 6.5, SD = 4.95). Sessoms and Henson suggested that “DCM 



www.manaraa.com

44 

 
 

technical research often does not align with DCM applications. Thus, DCM simulation research 

may need to expand the number of attributes assessed to increase generalizability to applied 

research.” (Sessoms & Henson, 2018, p. 9). 

Guidelines for sufficient sample sizes have yet to be established for the many variations 

of DCMs. The use of DCMs to provide diagnostic information to classroom teachers has often 

been cited as one of the great potentials of DCMs. Some have criticized DCM research for using 

large sample sizes that do not approximate classroom settings (Henson, 2009; Huff & Goodman, 

2007). However, large sample sizes may only be necessary for the initial parameterization of the 

model. Once appropriate model parameters have been established, these parameters could be 

used in a formulaic approach to produce diagnostic results with small sample sizes. However, 

large sample sizes are generally recommended for the initial estimation of model parameters. 

Roughly 61% of articles reviewed by Sessoms and Henson (2018) had a sample size of more 

than 1,000. Surprisingly, four studies reviewed had a sample size between 50 and 150.  

The most popular DCMs variants were the DINA, general models, and the RUM. The 

distribution of attribute classifications is often used to evaluate the quality of the DCM. A 

common practice is to report the proportions of attribute masters and non-masters as well as 

mastery profiles. Attribute associations are also commonly used to evaluate the relationship 

between attributes. Sessoms and Henson (2018) found that these attribute correlations were often 

.90 or larger. These high correlations may bring into question each attribute’s distinctiveness 

and, consequently, the DCM’s ability to appropriately differentiate between masters and non-

masters (Kunina-Habenicht et al., 2009). It is important to note that at least one study which 

developed diagnostic assessments within the DCM framework had attribute correlations below 

.80 (Bradshaw et al., 2014). This finding suggests that perhaps highly correlated attributes are a 
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more complex issue involving domain theories, assessment development, and diagnostic 

modeling.  

The Standards for Educational and Psychological Testing (AERA et al., 2014) stated that 

evidence for the reliability and validity of test scores should be reported in conjunction with a 

description of how the results will be used. Some have criticized the application of DCMs due to 

the lack of reliability and validity evidence (Sinharay & Haberman, 2009). Reliability evidence 

that can be provided for DCMs is distinct from the evidence that typically accompanies CTT or 

IRT methods. Templin and Bradshaw (2013) conceptualized reliability in the context of DCMs 

as “how consistent an examinee’s estimate from a DCM will be over hypothetically repeated 

observations. As such, the calculation of the DCM reliability measure is enabled by simulating 

repeated testing occasions through repeated draws from an examinee’s posterior distribution.” (p. 

258). This definition of reliability is similar to the more traditional test-retest reliability. They 

developed a three-stepped method for providing reliability evidence in the context of DCMs. 

First, the probability of attribute mastery is estimated for each examinee. Second, a replication 

contingency table of attributes is created. Third, attribute reliability is calculated using a 

tetrachoric or polychoric correlation of attributes. Sessoms and Henson (2018) found that few 

studies reported reliability evidence (36%) and that only 61% utilized DCM-specific approaches 

to estimating reliability.  

The literature on validity evidence in the context of DCMs has not been well developed. 

As such, it is not surprising that Sessoms and Henson (2018) found sparse reporting of validity 

evidence. They found that only 22% of studies reported any type of validity evidence and that 

this evidence was rarely formulated into a validity argument. They suggested practitioners using 
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DCMs should construct a validity argument, which may include a treatment of (a) construct 

representativeness, (b) internal validity, (c) external validity, and (d) results use and utility.  

Retrofitting Assessment Data to Diagnostic Classification Models 

 Retrofitting is commonly defined as the post hoc analysis of non-diagnostic assessment 

response data to DCMs. A common retrofitting practice is to take an existing unidimensional 

assessment and attempting to tease out multiple dimensions through the use of DCMs. As 

expected, this practice often results in suboptimal model fit and classifications. In contrast, the 

development of a diagnostic assessment with the specific purpose for fitting response data to a 

DCM is often lauded as the ideal in diagnostic assessment and modeling. However, this practice 

requires a substantial amount of effort, and there are few published examples for practitioners to 

follow (Bradshaw et al., 2014; Sessoms & Henson, 2018). Many authors have acknowledged the 

limitations of retrofitting and argued for the use of purposefully designed multidimensional 

diagnostic assessments (Bradshaw et al., 2014; Gierl & Cui, 2008; Leighton, 2008; R. Liu et al., 

2017; Ravand & Baghaei, 2019; Rupp & Templin, 2009). Rupp and Templin (2009) strongly 

asserted that “we need to stop retrofitting DCMs to unidimensional assessments (p. 116).  

R. Liu et al. (2017) noted that: 

retrofitting multidimensional DCMs [to unidimensional assessments] can introduce a 

conundrum with respect to dimensionality that may not be easily resolved. However, 

retrofitting provides a way to attempt to reap the benefits of DCM in the current 

landscape in which not many tests have been designed to assess multidimensional skills, 

and it will be a number of years before that situation changes given the time intensive 

nature of developing such assessments. Therefore, it is possible that retrofitting may be a 

primary source of DCM applications for the near future until the test construction 
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processes for multidimensional assessments become more ingrained in practice. We 

support the notion that retrofitting should not be encouraged as a standard approach to a 

measurement endeavor and not all assessments are suitable for retrofitting. But it also 

may be justifiable to recognize the struggle between the urging needs of diagnostic 

information and limited resources to develop and administer new diagnostic assessments. 

(p. 359) 

Theoretically based multidimensional assessments developed and used outside the context of 

DCMs may be more favorable candidates for retrofitting than their unidimensional counterparts.  

 One criticism of retrofitting is a lack of a theoretical foundation for assessment 

dimensions (i.e., attributes) and the ad-hoc association of items to cognitive processes (Leighton, 

2008). However, in rare circumstances, non-diagnostic assessments have been developed based 

on substantive cognitive theories using sound assessment development practices; the Precalculus 

Concept Assessment (PCA; Carlson et al., 2010) is one such assessment. Many of the practices 

recommended for the development of uniquely diagnostic assessments for the use with DCMs 

(Bradshaw et al., 2014; Bradshaw, 2017) were followed in the PCA development. As such, PCA 

response data is positioned well for an ad-hoc retrofit analysis using DCMs.  

 Frameworks for retrofitting assessment data to DCMs have been established to guide 

practitioners in applying DCMs (R. Liu et al., 2017; Ravand & Baghaei, 2019). The focal point 

of the retrofitting process is the identification of attributes and their association with assessment 

items (i.e., the construction of the Q-matrix). The remaining process of fitting DCMs and 

assessing model quality is not unique to the retrofitting process and follows recommendations for 

applying DCMs to diagnostic assessments. 
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CHAPTER 3 

Method 

 The methods described in this section were formulated to address each of the study’s four 

research questions, namely:  

1. To what extent does a confirmatory factor analysis of PCA pretest data provide 

evidence that supports the validity of the three-factor structure implied by the PCA 

Taxonomy? 

2. If the three first-order factors are found to be highly correlated, to what extent do rival 

models (i.e., a single-factor model, a second-order factor model, or a bifactor model) 

fit better than the three first-order factors model and illuminate the interrelationships 

among the three first-order factors? 

3. How successfully can the PCA response data be retrofitted for an analysis using a 

general diagnostic classification model (DCM)? 

4. How does the adequacy of a DCM model based on the factor structure implied by the 

PCA Taxonomy compare with a DCM model based on the CFA results? 

Confirmatory factor analysis (CFA) procedures were used to address the first and second 

research questions. The third and fourth research questions were addressed using diagnostic 

classification methods (DCMs). The remainder of this section describes the method by which 

these questions were addressed, including the data collection and analysis procedures.  

Data Collection and Instrumentation 

 This study was conducted using pre-existing data collected using the Precalculus Concept 

Assessment (PCA) instrument. Each PCA item consists of an item stem and five response 

options. The majority of the PCA items are context-dependent because they rely on interpreting a 
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graph or figure. The PCA does not employ the use of testlets. That is, each context-dependent 

item is independent of the others since it relies on a unique graph or figure. Other items include 

story problems or mathematical equations presented in isolation.  

Data for this study were initially collected in select College Algebra and Precalculus 

sections at a large private university in the mountain west and one public university in the 

Phoenix metropolitan area. The 25-question PCA was administered to students in these sections 

both at the beginning and end of the semester. A sample of 3,018 pretest administrations was 

selected for this study.  

PCA student pretest response data were split into two data subsets: the Primary (n = 

1,509) and Cross-validation (n = 1,509) samples. These samples were created using systematic 

random sampling. This technique assigned all students a number representing the order in which 

their PCA pretest was scored. Students with an even number were assigned to the Primary 

sample, and odd numbers were assigned to the Cross-validation sample. This sampling technique 

was selected to ensure equal representation from course sections and semesters, recognizing that 

students were not assigned to take the test in any systematic order.  

The Primary subset was used in confirmatory processes, such as testing the model 

implied by the PCA Taxonomy and making modifications to that model. The Primary subset was 

also used to test the extent to which alternative models fit better than the implied model due to 

high correlations between the three first-order factors implied by the PCA Taxonomy. The 

Cross-validation subset was used to evaluate the degree to which model fit is consistent when 

estimated using data that was not part of the model development process. All available pretest 

data were used in the DCM specification due to the large data demands associated with this 

method.  
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Factor Analysis Procedures 

 Factor analysis procedures were used to address the first and second research questions. 

Mplus 8.4 (Muthén & Muthén, 2017) was used to conduct confirmatory factor analyses. Due to 

the dichotomous nature of the PCA response data, the WLSMV estimator was used for all model 

estimation procedures (Brown, 2015; Wang & Wang, 2012).  

 Missing data in testing situations is a common occurrence. These missing data generally 

occur in two situations where (a) students intentionally skip questions or (b) students leave 

questions unanswered because they run out of time allocated for testing. The first situation is the 

only situation that applied to the PCA data because the test was not a timed test. Missing data 

were inspected to detect any systematic patterns of missingness. The results of this inspection 

found that there were no clear patterns in missing data. Missing data in these samples accounted 

for less than 0.12% of the data. One limitation of the WLSMV estimator in Mplus is that it uses 

the less desirable pairwise method for handling missing data. Considering the limited amount of 

missing data, the limitations of the pairwise deletion technique presumably did not impact this 

study's results negatively.  

 The factor analyses for this study were executed in a systematic, iterative process using 

preset guidelines for model evaluation and revision. This process consisted of two phases of 

model specification, estimation, and evaluation. The first phase was conducted using the Primary 

data subset in which the theoretical model of the PCA Taxonomy was tested. This phase also 

focused on making refinements to the model to arrive at an acceptable model fit. The first phase 

concluded by evaluating alternative models due to high correlations between the three first-order 

factors. The second phase of factor analysis procedures was a multi-group analysis using the 

Cross-validation data subset to cross-validate the Phase 1 results. 
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Confirmatory Factor Analysis of the Implied Theoretical Model 

 The first phase of factor analysis used CFA methods to test the theorized three first-order 

factor model derived from the PCA Taxonomy. This model consists of the following item to 

factor loadings (Figure 1): 

• Process View of Function (R1); items 1,2, 4, 5-13, 17, 20, 22,23 

• Covariational Reasoning (R2); items 15, 18, 19, 24,25 

• Computational Abilities (R3); items 1, 3,4, 10,11, 14, 16,17, 21 

The CFA model implied by the PCA Taxonomy and other potential rival models were evaluated 

using the CFI, TLI, RMSEA, and SRMR fit indices (West et al., 2012; Yu, 2002). The following 

recommendations of Hu and Bentler (1999) were used as a guide: CFI and TLI ≥ 0.95, RMSEA 

≤ 0.06, and SRMR < .08.  

 Modifications to the model implied by the PCA Taxonomy were made to arrive at a good 

fitting model that aligns with the previously mentioned guidelines. Modifications were based on 

a combination of (a) fit statistics, (b) factor loadings, (c) factor correlations, and (d) modification 

indices. 

Figure 1 

Model for Three First-Order Model 

 
 



www.manaraa.com

52 

 
 

 Standardized factor loadings were evaluated based on a minimum weak factor loading of 

|.30| and desired factor loading ≥ |.40|. Item cross-loadings with a difference ≤ .15 from an item’s 

largest factor loading were considered not to provide evidence for a simple structure (i.e., 

loading on a single factor). Factor correlations ≥ .85 were reviewed and considered for being 

specified with an alternative model structure. Localized areas of model strain were evaluated by 

examining individual standardized errors and the overall distribution of errors. Items with large 

standardized errors were reviewed. Modification indices were used as a final step in model 

modification. The relative size of modification indices was considered and compared to 

substantive theory to justify any recommended model modifications.  

 After a good fitting model was achieved, the factor correlations were examined. 

Alternative models were evaluated due to factor correlations greater than or equal to .85 (Brown, 

2015). Alternative models evaluated included a single-factor model (Figure 2), a second-order 

factor model (Figure 3), and a bifactor model (Figure 4). Nested models were compared 

empirically using the adjusted chi-square difference test using the Mplus “DIFFTEST” function. 

Figure 2 

Alternative Single-Factor Model 

 
 



www.manaraa.com

53 

 
 

Figure 3 

Alternative Second-Order Factor Model 

 
 
Figure 4 

Alternative Bifactor Model 

 
 
Cross-Validation of Confirmatory Factor Analysis Results  

 The purpose of the second and final phase of factor analytic procedures was to cross-

validate the final models from Phase 1 and to compare these models to the initial models implied 

by the PCA Taxonomy. Model estimation and evaluation were replicated from Phase 1. 

However, models in Phase 2 were estimated using the Cross-validation data subset. Model fit 

using the Cross-validation data subset was compared to model fit using the Primary data subset. 
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The degree to which model fit varied between these subsets provided evidence to support these 

models' generalizability.  

 Multi-group modeling procedures were used to compare models using each of the data 

subsets using the Mplus model = configural and scalar command with the WLSMV estimator 

and Theta parameterization. Muthén and Muthén (2017) wrote that the configural model with 

these estimation settings has “factor loadings and thresholds free across groups, residual 

variances fixed at one in all groups, and factor means fixed at zero in all groups” (p. 542-543). 

Muthén and Muthén (2017) also wrote that the scalar model has “factor loadings and thresholds 

constrained to be equal across groups, residual variances fixed at one in one group and free in the 

other groups, and factor means fixed at zero in one group and free in the other groups” (p. 543).  

 Evaluating the degree to which the configural and scalar models differ in model fit is a 

topic that has been written and researched much (F. F. Chen, 2007; Cheung & Rensvold, 2002; 

Meade et al., 2008). However, limited research has been conducted on how to approach these 

comparisons using dichotomously scored items. Based on simulation studies, Sass et al. (2014) 

reported that using changes in approximate fit indexes (ΔAFI) under these circumstances (i.e., 

dichotomous data with WLMSV estimator) is often problematic and cautioned against their use.  

 Considering the lack of empirical evidence for an alternative approach, this study used 

the Mplus “DIFFTEST” to test the differences between the configural and scalar models. The 

final models resulting from the two phases of factor analyses were used to provide empirical 

evidence to support recommendations for how PCA scores could be interpreted and reported. In 

addition, the final models were used to inform the subsequent DCM procedures by providing the 

basis for an alternative Q-matrix structure to the Q-matrix structure implied by the PCA 

Taxonomy. 
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Diagnostic Classification Modeling Procedures 

 Diagnostic Classification Models (DCMs) were used to address the third and fourth 

research questions. PCA student response data were fitted to the Log-linear Cognitive Diagnostic 

Model (LCDM) using the C-RUM parameterization. The model estimation followed the 

published recommendations for estimating the LCDM using the statistical software Mplus (Fager 

et al., 2019; Templin & Hoffman, 2013). The item-to-attribute relationship from the Reasoning 

Ability portion of the PCA Taxonomy was adopted as the Q-matrix for the initial LCDM (see 

Table 6). The rival factor structure from the FA procedures was used as the basis for an 

alternative Q-matrix structure. Rival models were compared using (a) model fit indices, (b) 

attribute classification reliabilities, (c) attribute profile and mastery proportions, and (d) attribute 

correlation matrices.  

Table 6 

Q-Matrix Based on the PCA Taxonomy 

Item Process View of Function (R1) Covariational Reasoning (R2) Computational Abilities (R3) 
1 1 0 1 
2 1 0 0 
3 0 0 1 
4 1 0 1 
5 1 0 0 
6 1 0 0 
7 1 0 0 
8 1 0 0 
9 1 0 0 

10 1 0 1 
11 1 0 1 
12 1 0 0 
13 1 0 0 
14 0 0 1 
15 0 1 0 
16 0 0 1 
17 1 0 1 
18 0 1 0 
19 0 1 0 
20 1 0 0 
21 0 0 1 
22 1 0 0 
23 1 0 0 
24 0 1 0 
25 0 1 0 
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CHAPTER 4 

Results 

 The results of this study are presented in the context of factor analysis, addressing 

Research Questions 1 and 2, and diagnostic classification models, addressing Research 

Questions 3 and 4.  

Factor Analysis  

The first analysis used CFA to fit the three-factor model implied by the PCA 

Taxonomy, shown in Figure 1, using the WLSMV estimator in Mplus. The initial 

estimation of this model converged normally but failed to estimate standard errors. 

Subsequently, a three-step specification search was conducted to arrive at a model that 

most closely approximated the model implied by the PCA Taxonomy. 

 The first step in the specification search identified items with factor loadings < 

.100. Items meeting this criterion were removed from the model. Although these items 

were fixed to not load on the originally specified factors, they were not removed from the 

analysis to retain a comparable data structure throughout the various steps of the model 

specification search. As a result, items 1, 4, 10, 13, and 23 were detached from the R1 

factor, and items 14 and 17 were detached from the R3 factor.  

 The second step in the specification search estimated the respecified model. The 

analysis terminated normally and produced standard errors, which in turn permitted 

statistical tests. Standardized factor loadings from this model were then examined. All 

factor loadings were statistically significant except for item 11 on the R3 factor. As a 

result, item 11 was detached from the R3 factor.  
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 The third and final stage of the specification search estimated the respecified 

model with item 11 removed from the R3 factor. The specification search ended with this 

respecified model, which successfully estimated the requested parameters, standard 

errors, and fit statistics. The path diagram for this respecified model is shown in Figure 5. 

In total, items 1, 4, 10, 13, and 23 were detached from the R1 factor, and items 11, 14, 

and 17 were detached from the R3 factor. In the final model, items 13, 14, and 23 were 

removed entirely from the analysis as they no longer had any association with one of the 

three factors. The respecified model resulting from the model specification search is 

referred to as the three-factor model in the subsequent sections.  

Figure 5 

Three-Factor Model 

 
 
Analysis of the Three-Factor Model 

 The analysis of the three-factor model (Figure 5) terminated normally. The fit 

statistics (CFI = 0.952, TLI = 0.946, RMSEA = 0.026, SRMR = 0.049) indicated that the 

model fit the data well, meeting all predetermined criteria specified in the method 

section. The resulting standardized factor loadings are reported in Table 7. The 
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correlations between the R3 factor and the other two factors were high, as reported in 

Table 8.  

Table 7 

Standardized Factor Loadings for the Three-Factor Model 

PCA Item 

Factor loadings 
Process View of 
Function (R1) 

Covariational Reasoning  
(R2) 

Computational Abilities  
(R3) 

2 .524   
5 .724   
6 .764   
7 .256   
8 .386   
9 .529   
11 .158   
12 .655   
17 .252   
20 .283   
22 .337   
15  .490  
18  .505  
19  .569  
24  .625  
25  .190  
1   .506 
3   .577 
4   .524 
10   .230 
16   .745 
21   .241 

 
 
Table 8 

Correlations Among Factors in the Three-Factor Model  

Factor R1 R2 R3 
Process View of Function (R1) –   
Covariational Reasoning (R2) .725 –  
Computational Abilities (R3) .812 .861 – 
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Analysis of Rival Models 

 The high factor correlations found in the three-factor model prompted the analysis 

of several rival models. These models included (a) single-factor model, (b) second-order 

factor model, and (c) bifactor model. An analysis of these models was conducted to 

understand better the relationship between the three factors (Brown, 2015). The results 

from these models are presented in the following sections. 

 The Single-Factor Model. A single-factor model (Figure 6) was estimated and 

converged normally. The fit statistics for the single-factor model (CFI = 0.934, TLI = 

0.928, RMSEA = 0.031, and SRMR = 0.054) met only two of the four predetermined 

criteria. The Mplus Chi-Square Test for Difference Testing (DIFFTEST) was used to test 

the difference between the three-factor model and the single-factor model. The result of 

the DIFFTEST was statistically significant (χ2 (16, 1509) = 109.524, p < 0.001), 

providing additional evidence that the single-factor model fit the data worse than the 

three-factor model. 

Figure 6 

Single-Factor Model 
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 The Second-Order Factor Model. Analysis of the second-order factor model (Figure 7) 

terminated normally. As expected, the fit statistics for this locally just-identified model were 

equivalent to the fit statistics of the three-factor model. However, the purpose of estimating this 

model was not to empirically compare the model fit of the second-order factor model with the 

three-factor model. Instead, the purpose was to gain additional insight into the relationship 

between the R1, R2, and R3 factors. This additional evidence was obtained by inspecting 

residual variances for the R1, R2, and R3 factors and their R2 values. 

A statistically significant residual variance was not found for the R3 factor (Std. 

Residual = 0.037, p = 0.558), indicating that the R3 factor does not account for a 

statistically significant portion of the variance. That is, the second-order Reasoning 

Ability factor presumably accounts for almost all of the variance of R3. The R2 values for 

this model were all statistically significant with values ranging from 0.684 to 0.963 (R1 = 

0.684, R2 = 0.769, and R3 = 0.963). The high R2 value for R3 suggests that the R3 factor 

may be the main contributor to the higher-order Reasoning Ability factor.  

Figure 7 

Second-Order Factor Model 

 
 



www.manaraa.com

61 

 
 

 The Bifactor Model. A bifactor model with one general factor and three specific factors 

was analyzed and terminated normally (Figure 8). However, the software failed to estimate 

standard errors for the parameters in this model. Based on evidence from the high correlations in 

the three-factor model and the residual variance and R2 values for R3 in the second-order factor 

model, it was hypothesized that the specific factor R3 in the bifactor model had empirically 

collapsed (Brown, 2015, p. 303; F. F. Chen et al., 2006). Consequently, the bifactor model was 

then respecified to exclude R3 as a specific factor while retaining the items corresponding to R3 

as part of the general factor. The revised bifactor model then included a general factor and only 

two specific factors as shown in Figure 9. 

 The analysis of this respecified bifactor model terminated normally and produced 

estimates of the standard errors. The fit statistics indicated that this model fit the data well 

(CFI = 0.953, TLI = 0.943, RMSEA = 0.026, SRMR = 0.048). The ability to make a 

direct empirical comparison between the three-factor model and the respecified bifactor 

model was limited. The collapsing of the R3 specific factor caused the respecified 

bifactor model to not be nested in the three-factor model and therefore eliminated the 

ability to use the DIFFTEST function as planned. The use of the respecified bifactor 

model successfully partitioned the unique variances of the items due to the influence of 

the specific and the general Reasoning Ability factors providing additional empirical 

evidence related to the unique contributions of R1 and R2.  

 An inspection of the standardized factor loadings in Table 9 revealed four items 

(7, 20,18, and 25), which had specific factor loadings that were not statistically 

significant. These non-significant factor loadings show that specific factors R1 and R2 do 

not account for a significant amount of item variance beyond the general factor. That is, 
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the general Reasoning Ability factor accounts for almost all of the variance for these 

items. 

Figure 8 

Bifactor Model 

 Figure 9 

Respecified Bifactor Model 
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Table 9 

Respecified Bifactor Model Standardized Factor Loadings 

PCA Item 

Factor loadings 

General Reasoning 
Ability 

Process View of Function 
(R1) 

Covariational Reasoning 
(R2) 

2 .448*   .247*  
5 .568*   .503*  
6 .623*   .438*  
7 .233* .078  
8 .328*   .184*  
9 .468*   .194*  
11 .108*   .150*  
12 .504*   .482*  
17 .209*   .134*  
20 .258* .083  
22 .294*   .149*  
15 .416*    .386* 
18 .462*  .084 
19 .492*    .395* 
24 .557*    .201* 
25 .180*  -.004 
1 .501*   
3 .572*   
4 .520*   
10 .227*   
16 .737*   
21 .240*   

* p < 0.05 

Maximum Likelihood Estimation 

 Using the maximum likelihood with robust standard errors (MLR) estimator in 

Mplus produces the relative fit statistics AIC, BIC, and Sample-Size Adjusted BIC. 

These fit statistics allow for the comparison of non-nested models with smaller values 

indicating a better fit (Wang & Wang, 2012). The single-factor and respecified bifactor 

models were estimated with the MLR to facilitate model comparison using relative fit 
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statistics. Small differences were found between the relative fit of the three models as 

shown in Table 10. 

Table 10 

Relative Fit Statistics Using MLR Estimator  

Model 

Number of 
Parameters 
Estimated 

Degrees of 
Freedom AIC BIC 

Sample-Size 
Adjusted BIC 

Respecified 
bifactor 60 193 37290 37609 37419 

Three factor 47 206 37340 37590 37441 

Single factor 44 209 37406 37640 37500 

 

Reliability Estimates 

 Reliability analysis using omega (ω) and omega-hierarchical (omegaH or ωH) was 

conducted to examine the extent to which the specific factors R1 and R2 have substantive 

meaning above and beyond the general Reasoning Ability factor (S. P. Reise et al., 2013; 

A. Rodriguez et al., 2016a, 2016b). Omega estimates the proportion of variance attributed 

to all systematic sources of variance in the model (i.e., both specific and general factors). 

High omega values represent the high reliability of scores from the entire 

multidimensional model. OmegaH, however, estimates only the percent of variance 

directly attributed to the general factor. The “comparison of omega to omegaH is useful 

in revealing the degree to which an estimate of reliability is inflated due to 

multidimensionality” (S. P. Reise et al., 2013, p. 133). In contrast to omegaH, omega 

hierarchical subscale (omegaHS or ωHS) estimates a single subscale's reliability. 
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 Omega, omegaH, and omegaHS were all estimated using the respecified bifactor 

model. The computation of the omega reliability statistic resulted in a value of .841. The 

reliability of the general Reasoning Ability factor was found to have an omegaH value of 

.763, meaning that 76% of the variance in PCA total scores can be attributed to the 

general Reasoning Ability factor. The ratio of omegaH to omega is .908, meaning that 

approximately 91% of the reliable variance can be attributed to the general Reasoning 

factor. Therefore, only 9% of the total variance can be attributed to the R1 and R2 

specific factors. The computation of the omegaHS value further highlights the reliability 

of this 9% of the variance. The omegaHS values for R1 and R2 were .220 and .122, 

respectively, indicating that the variances partitioned by the R1 and R2 specific factors 

had little unique reliable variance. 

 Explained common variance (ECV; S. Reise et al., 2010) is an indicator that is 

used to assess unidimensionality. Conceptually, the ECV represents the amount of 

variance that can be attributed to the general factor out of the total common variance in a 

bifactor model. ECV values range from 0 to 1, with higher ECV values being indicative 

of a model with a strong general factor compared to the strength of the specific factors. 

The ECV value for the respecified bifactor model was .77. A. Rodriguez et al. (2016a) 

suggested that when ECV values are greater than .70, “the factor loadings obtained from 

a unidimensional model might approximate well (i.e., be unbiased) the factor loadings on 

the general factor obtained from a bifactor solution” (p. 231). 

 The percent of uncontaminated correlations (PUC) “is the number of unique 

correlations in a correlation matrix that are influenced by a single factor divided by the 

total number of unique correlations” (A. Rodriguez et al., 2016b, p. 146). The PUC is 
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another metric that can be used to judge the dimensionality of an instrument. Higher PUC 

values are indicative of a bifactor model where the general factor can be considered 

essentially unidimensional. The PUC for the General Reasoning Ability factor in the 

revised bifactor model was .72. A PUC of .72 in conjunction with an ECV value of .77 

provides additional evidence that the PCA is essentially unidimensional (A. Rodriguez et 

al., 2016a). 

Cross-Validation 

 An analysis was conducted to compare the model fit using the primary (n = 1509) 

and cross-validation (n = 1509) data subsets using the Mplus DIFFTEST and 

GROUPING functions. The single-factor model was estimated, and no statistically 

significant differences were found between the configural and scalar models (χ2 (20, 

3018) = 12.075, p = 0.913). Similar results were found with the three-factor model (χ2 

(16, 3018) = 10.276, p = 0.851) and the respecified bifactor model (χ2 (32, 3018) = 

26.539, p = 0.739). Together, these results provide evidence that the respecified models 

were not over-specified to the specific subset of data used for their development.  

Diagnostic Classification Modeling 

Diagnostic Classification Models (DCMs) were used to address the third and 

fourth research questions. A Log-linear Cognitive Diagnostic Model (LCDM) was fitted 

to the PCA student response data. The models were estimated using the C-RUM 

parameterization using the Q-matrix structure implied by the PCA Taxonomy (Table 6). 

The analysis of this model resulted in a non-positive definite first-order derivative 

product matrix. The Q-matrix was then respecified based on the results of the factor 

analysis specification search (Table 11).  
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Table 11 

Respecified Q-Matrix Structure  

Item 
Process View of Function 

(R1) 
Covariational Reasoning  

(R2) 
Computational Abilities 

(R3) 
1 0 0 1 
2 1 0 0 
3 0 0 1 
4 0 0 1 
5 1 0 0 
6 1 0 0 
7 1 0 0 
8 1 0 0 
9 1 0 0 
10 0 0 1 
11 1 0 0 
12 1 0 0 
15 0 1 0 
16 0 0 1 
17 1 0 0 
18 0 1 0 
19 0 1 0 
20 1 0 0 
21 0 0 1 
22 1 0 0 
24 0 1 0 
25 0 1 0 

 
Analysis of the Respecified Q-Matrix Structure 

The analysis using the respecified Q-matrix terminated normally. However, 

Mplus was unable to estimate chi-square statistics due to the size of the frequency table 

for latent class portion of the model. The relative fit statistics for this model were; AIC = 

70148.39, BIC = 70455.02, and Sample-Size Adjusted BIC = 70292.97. The attribute 

classification reliabilities (Templin & Bradshaw, 2013) were; R1 = .957, R2 = .788, and 

R3 = .957. Of the eight possible mastery profiles, this model only classified students into 

the three mastery profiles shown in Table 12. The attribute correlations ranged from .814 

to .973 as shown in Table 13. An inspection of the model parameter estimates revealed 

that the main effect for R1 on item 12 approached extreme values. As a consequence, 
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Mplus fixed these main effects to stabilize model estimation. The main effect for R2 on 

item 25 was not statistically significant (Table 14). All other main effect parameters were 

found to be statistically significant.  

Table 12 

Mastery Profiles for Respecified Q-Matrix Structure 

Process View of Function 
(R1) 

Covariational Reasoning 
(R2) 

Computational Abilities 
(R3) 

Student Count 
(%) 

Non-master Non-master Non-master 2126 (70.44%) 

Master Non-master Master 194 (6.43%) 

Master Master Master 698 (23.13%) 

 
 
 
Table 13 

Attribute Correlations for Revised Q-Matrix Structure 

Factor R1 R2 R3 

Process View of Function (R1) –   

Covariational Reasoning (R2) .814 –  

Computational Abilities (R3) .973 .907 – 
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Table 14 

Item Parameters for DCM With Revised Q-Matrix Structure 

Item  Intercept Main Effect (Attribute) Increase in Log-odds Increase in Probability 
1 -1.42 1.64* (R3) 3.06 0.96 
2 -0.41 1.50* (R1) 1.91 0.87 
3 -1.47 1.41* (R3) 2.88 0.95 
4 -1.69 2.74* (R3) 4.43 0.99 
5 -1.91 2.87* (R1) 4.78 0.99 
6 -0.82 0.55* (R1) 1.37 0.80 
7 -2.59 1.09* (R1) 3.68 0.98 
8 -0.99 2.03* (R1) 3.03 0.95 
9 -1.25 0.59* (R1) 1.84 0.86 
10 -1.65 0.46* (R3) 2.11 0.89 
11 -1.76 2.68* (R1) 4.44 0.99 
12 -1.85 X (R1) X X 
15 -2.52 0.67* (R2) 3.19 0.96 
16 -1.02 1.19* (R3) 2.21 0.90 
17 0.39 4.21* (R1) 3.82 0.98 
18 -2.21 1.15* (R2) 3.36 0.97 
19 -0.16 1.82* (R2) 1.98 0.88 
20 -0.38 1.56* (R1) 1.94 0.87 
21 -0.84 0.83* (R3) 1.67 0.84 
22 -1.28 0.71* (R1) 1.99 0.88 
24 -1.81 1.48* (R2) 3.29 0.96 
25 -2.45 0.12 (R2) 2.57 0.93 

* p < 0.05, X = parameter fixed by Mplus to stabilize model estimation 

 
Analysis of the CFA Bifactor Derived Q-Matrix Structure 

 The rival Q-matrix structure shown in Table 15 was specified based on the results 

of the final bifactor model. The analysis of the bifactor derived Q-matrix structure 

terminated normally. The relative fit statistics for this model were AIC = 69582.10, BIC 

= 69984.92, and Sample-Size Adjusted BIC = 69772.04. The attribute classification 

reliabilities for this model were G1 = .873, R1 = .919, and R2 = .908. This model 

classified students into six of the eight possible mastery profiles (Table 16). The attribute 

correlations ranged from .325 to .993, as shown in Table 17. An inspection of the item 
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parameters found that the main effects for attribute R1 on item 20 and R2 on item 19 

were not statistically significant (Table 18). Mplus fixed three other parameters to 

stabilize model estimation. 

Table 15 

Bifactor Derived Q-Matrix Structure  

Item 
General Reasoning Ability 

(G1) 
Process View of Function  

(R1) 
Covariational Reasoning  

(R2) 
1 1 0 0 
2 1 1 0 
3 1 0 0 
4 1 0 0 
5 1 1 0 
6 1 1 0 
7 1 1 0 
8 1 1 0 
9 1 1 0 

10 1 0 0 
11 1 1 0 
12 1 1 0 
15 1 0 1 
16 1 0 0 
17 1 1 0 
18 1 0 1 
19 1 0 1 
20 1 1 0 
21 1 0 0 
22 1 1 0 
24 1 0 1 
25 1 0 1 
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Table 16 

Mastery Profiles for Bifactor Derived Q-Matrix Structure 

General Reasoning Ability 
(G1) 

Process View of Function 
(R1) 

Covariational Reasoning 
(R2) Student Count (%) 

Non-master Non-master Non-master 1750 (57.99%) 

Non-master Master Non-master 4 (0.13%) 

Non-master Master Master 411 (13.62%) 

Master Non-master Non-master 444 (14.71%) 

Master Master Non-master 2 (0.07%) 

Master Master Master 407 (13.49%) 
 

 

Table 17 

Attribute Correlations for Bifactor Derived Q-Matrix Structure 

Factor G1 R1 R2 

General Reasoning Ability (G1) –   

Process View of Function (R1) .325 –  

Covariational Reasoning (R2) .415 .993 – 
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Table 18 

Item Parameters for DCM With Bifactor Derived Q-Matrix Structure 

Item  Intercept 
Main Effect 

(G1) 
Main Effect 

(R1) 
Main Effect 

(R2) 
G1 Increase in  

Log-odds (Prob.) 
R1 Increase in  

Log-odds (Prob.) 
R2 Increase in  

Log-odds (Prob.) 
1 -0.25 1.41* ----- ----- 1.66 (0.84) ----- ----- 
2 -1.53 0.69* 1.46* ----- 2.22 (0.90) 2.99 (0.95) ----- 
3 -0.52 2.44* ----- ----- 2.96 (0.95) ----- ----- 
4 -0.93 1.16* ----- ----- 2.09 (0.89) ----- ----- 
5 -0.62 2.30* 0.29* ----- 2.92 (0.95) 0.91 (0.71) ----- 
6 -1.66 1.40* 0.70* ----- 3.06 (0.96) 2.36 (0.91) ----- 
7 -2.07 0.88* 3.35* ----- 2.95 (0.95) 5.42 (1.00) ----- 
8 -2.21 1.47* 2.66* ----- 3.68 (0.98) 4.87 (0.99) ----- 
9 -0.90 0.45* 0.41* ----- 1.35 (0.79) 1.31 (0.79) ----- 
10 -1.29 0.81* 0.31* ----- 2.10 (0.89) 1.60 (0.83) ----- 
11 -2.84 1.41* 1.29* ----- 4.25 (0.99) 4.13 (0.98) ----- 
12 -1.23 1.72* ----- ----- 2.95 (0.95) ----- ----- 
15 -1.85 X ----- X X ----- X 
16 -1.92 1.30* ----- ----- 3.22 (0.96) ----- ----- 
17 -1.30 0.54* 0.27* ----- 1.84 (0.86) 1.57 (0.83) ----- 
18 -2.57 0.00* ----- 0.64* 2.57 (0.93) ----- 3.21 (0.96) 
19 -1.18 1.59* ----- 0.18 2.77 (0.94) ----- 1.36 (0.80) 
20 -1.75 0.57* 0.22 ----- 2.32 (0.91) 1.97 (0.88) ----- 
21 -2.43 0.00* ----- ----- 2.43 (0.92) ----- ----- 
22 -2.07 1.10* 2.83* ----- 3.17 (0.96) 4.9 (0.99) ----- 
24 0.18 1.64* ----- X 1.46 (0.81) ----- X 
25 -2.30 0.63* ----- 0.50* 2.93 (0.95) ----- 2.80 (0.94) 

* p < 0.05, ----- = parameter not specified in model, X = parameter fixed by Mplus to stabilize model estimation 
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CHAPTER 5 

Discussion 

 The PCA is a widely used and highly regarded instrument designed to assess the 

constructs specified in the PCA Taxonomy. The overarching purpose for conducting this 

research was to investigate the internal structure of PCA response data to examine empirical 

validity evidence (Standards 1.13; AERA et al., 2014). Such validity evidence is essential to 

support the selection of a score reporting method (i.e., single total score or multiple subscores) 

(Standards 1.14, 1.15; AERA et al., 2014). A secondary purpose was to investigate the 

appropriateness of retrofitting PCA response data to diagnostic classification models (DCMs) to 

produce diagnostic profiles for individual students regarding their mastery and nonmastery status 

on each trait. The following sections will discuss the research results in the context of this 

study’s four research questions.  

Evidence Supporting the Three-Factor Structure 

 The first research question asked, to what extent does a confirmatory factor analysis of 

PCA pretest data provide evidence that supports the validity of the three-factor structure implied 

by the PCA Taxonomy. The fit statistics from the three-factor model analysis provided evidence 

that the model implied by the PCA Taxonomy fit the data well (Table 19). This evidence 

supports the validity of the implied multidimensionality of the PCA Taxonomy. However, the 

high correlations between factors brought into question the three-factor model's ability to 

adequately differentiate between each of the three reasoning ability constructs. The inability of 

this model to clearly distinguish between constructs may be influenced by several underlying 

characteristics, including but not limited to (a) the inherent nature of the constructs, (b) the 

quality of the items representing these constructs, or (c) inadequacies of the statistical model. 
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Forcing all crossloadings in the three-factor model to zero may have inflated the factor 

correlations to the point where the model produces limited evidence of discriminant validity. The 

purpose for investigating rival statistical models (i.e., a single-factor model, a second-order 

factor model, and a bifactor model) was to explore the extent to which these models illuminated 

the interrelationships among the three reasoning constructs.  

Table 19 

Fit Statistics for Three Rival CFA Models  

Model 

Number of 
Parameters 
Estimated 

Chi-
square 

Degrees of 
Freedom CFI TLI RMSEA 

RMSEA 
90% C.I. 

SRM
R 

Respecified 
bifactor 60 393.310 193 .953 .943 .026 .023 --.030 .048 

Three 
factor 47 410.029 206 .952 .946 .026 .022 -- .029 .049 

Single 
factor 44 503.214 209 .934 .928 .031 .027 -- .034 .054 

 

Evidence Supporting Rival Model Structures 

 The second research question was contingent upon highly correlated factors in the three-

factor model implied by the PCA Taxonomy. The presence of a correlation greater than .85 lead 

to the investigation of rival models. Because the three-factor model had favorable fit statistics, 

the investigation of rival models was primarily done to illuminate the interrelationships among 

the three first-order factors. Each rival model tested a hypothesized alternative internal structure 

than the structure implied by the PCA Taxonomy. The first rival model tested was the single-

factor model. Fitting this model permitted the evaluation of the hypothesis that the three 

reasoning factors implied by the taxonomy were all representations of a single construct as 

opposed to three distinct constructs.  
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 The fit statistics for the single-factor model (Table 19) met only two of the four 

predetermined criteria which indicated it was not an adequate representation of the structure 

underlying the data. As shown in Table 10 and 20, a comparison of AIC, and BIC fit statistics 

using the MLR estimator found only small differences between the single-factor model and the 

three-factor model. The comparison of the single-factor and respecified bifactor model also 

revealed slight differences between the two models. The inconsistent differences between the 

AIC and BIC values highlight the impact of model complexity on the calculation of these 

relative fit statistics. For example, when comparing the three-factor model to the respecified 

bifactor model, the AIC favors the bifactor model while the BIC favors the three-factor model. 

These discrepancies are due to the way in which the BIC imposes a greater penalty for model 

complexity. The unknown distributional properties of the AIC and BIC makes it impossible to 

define meaningful cutoffs to clearly indicate which model is be than another. The similar relative 

fit statistics for the single-factor, three-factor, and bifactor models do not produce compelling 

evidence for a clearly superior model. 

Table 20 

Differences in Relative Fit Statistics 

Model Respecified bifactor  Three factor 
 ΔAIC ΔBIC ΔABIC  ΔAIC ΔBIC ΔABIC 
Respecified bifactor – – –     

Three factor 50 -19 22  – – – 
Single factor 115 30 81  65 49 59 

 

 The second rival model tested was the second-order factor model. The purpose of 

estimating this model was to gain additional insight into the relationship between the three 

factors. Although the three-factor model and the second-order factor model are considered 



www.manaraa.com

76 

 
 

equivalent solutions (i.e., produce identical goodness of fit statistics; Brown, 2015, p. 179), the 

second-order factor model provided additional parameters and statistics which helped to 

understand the relationship between factors.  

Modeling the second-order model permitted the inspection of the residual variances and 

R2 values for the three first-order factors. It was anticipated that all three first-order factors would 

have large R2 values and small residual variances, indicating that a large portion of their variance 

was being accounted for by the second-order factor. However, it was not anticipated that the R2 

value for the R3 factor in the second-order model would be as large as .963 and the residual 

variance as small as .037. These results indicate that almost all of the variance of the R3 factor 

was accounted for by the second-order factor. The additional information gained from the 

second-order model regarding the R3 factor proved useful in the specification of the respecified 

bifactor model, which empirically collapsed the specific R3 factor into the general reasoning 

ability factor. 

The third rival was the bifactor model. The initial attempt to estimate a bifactor model 

with one general factor and three specific factors was unsuccessful. The respecified bifactor 

model collapsed the specific R3 factor into the general factor. The resulting respecified bifactor 

model hypothesized that all items loading on a general factor, 11 items loading on the R1 

specific factor, and 5 items loading on the R2 specific factor (Figure 9). Fit statistics indicated 

that this model fit the data well (Table 19) and slightly better than the other rival models.  

The bifactor model provided the advantage of partitioning the shared and unique variance 

for each item contributing to a specific factor. This partitioning allowed for the inspection of 

specific factors as a unique component of the model isolated from the shared characteristics of 

the general factor. Although the revised bifactor model was a suitable alternative to the three-
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factor model, the factor loadings on many of the specific factor items were low. These low factor 

loadings may be an indication that the specific factors do not have substantive meaning apart 

from the general Reasoning Ability factor.  

Another notable advantage of the bifactor model was the ability to use model-based 

reliability estimates such as omega (ω), omega-hierarchical (omegaH or ωH), and omega 

hierarchical subscale (omegaHS or ωHS) to address questions about the degree to which the 

general factor dominated the specific factors. The omega coefficient was .841 representing the 

proportion of variance attributed to both general and specific factors. The omega-hierarchical 

coefficient was .763, which is the proportion of the variance attributed solely to the general 

factor. The ratio of omegaH to omega revealed that approximately 91% of the overall reliability 

was attributed to the general reasoning factor. The reliability of the remaining 9% of variance 

attributed to the specific factors R1 and R2 was low (ωHS = .220 and .122 respectively). 

Accordingly, the specific factors in this model appear to largely represent nuisance variance. 

 The usefulness of the bifactor model to provide evidence for the use of subscores 

depended on the extent to which item variances were accounted for by the general factor as 

opposed to a specific factor. One indication that the specific factors may not be accounting for a 

large portion of item variance was the standardized factor loadings (Table 9). In all but one 

instance, the standardized loadings for the specific factors were lower than their corresponding 

loading on the general factor. These differences were, on average, .127 (R1) and .209 (R2). 

 The investigation into each of the rival models provided unique insights into the internal 

structure of the PCA pretest data. All of the models had adequate model fit with only slight 

differences. The use of the MLR estimator and the associated AIC, BIC, and ABIC highlighted 
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how close each of these models were in terms of model fit. Where no one model clearly 

outperforms another, the most parsimonious model is often selected as the preferred model.  

In this study, the parsimonious nature of the single-factor model makes it the preferred model.  

PCA Scoring and Interpretation  

 The investigation of the internal structure of PCA response data has specific implications 

for the validity of practices used to score and interpret PCA results. The initial analysis of the 

three-factor model revealed a strong relationship between the three reasoning ability constructs. 

Ignoring the high factor correlations and reporting subscores for each of the three constructs 

would make it difficult to interpret the meaning of these scores. Therefore, PCA subscores 

should not be reported for each of the three reasoning ability constructs.  

 The rival bifactor model results further supported reporting a single total score. The 

several non-significant specific factor loadings and other factor loadings well below acceptable 

levels indicated that the specific factors did not account for a large portion of the variance above 

and beyond the general factor. Reise et al. (2010) emphasized the implications of low specific 

factor loadings when they wrote, “[t]o the degree that the items reflect primarily the general 

factor and have low loadings on the group factors, subscales make little sense” (p. 555). 

Furthermore, the reliability analysis revealed that the unique variance attributed to the specific 

factors was small and unreliable. The small differences between the fit the single-factor model 

and other rival models supports the use of a single total score. 

 Due to the lack of validity evidence to support the use of subscores, the use of a single 

total score on the PCA may be the most psychometrically defensible method of scoring the 

instrument. These findings further support the assertion by Carlson et al. (2010) that “it would 
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not be appropriate to draw inferences about the abilities of an individual student relative to PCA 

subscores” (p. 137). 

Retrofitting the PCA for Diagnostic Classification Modeling 

 Diagnostic classification models were retrofitted to PCA data to investigate the ability of 

these models to provide diagnostic results for individual students. The LCDM with the 

constrained parameterization of the C-RUM model limited the estimation of item parameters to 

main effects only. Even with the reduced computational requirements of C-RUM, the model with 

the Q-matrix structure implied by the PCA Taxonomy (Table 6) resulted in a non-positive 

definite first-order derivative product matrix. Consequently, the Q-matrix was respecified (Table 

11) based on the simplified item to attribute relationship found in the three-factor CFA model. 

 One notable difference between the Q-matrix structure implied by the PCA Taxonomy 

and the structure derived from the three-factor CFA model is the absence of multidimensional 

items and the removal of items 13, 14, and 23 from the data set. The presence of only simple 

structure items (i.e., items associated with only one attribute) reduced the model's complexity by 

eliminating the need to estimate a main effect for each of the removed item-to-attribute 

associations. 

 The research on using absolute fit statistics with DCMs is inconclusive and has limited 

availability in statistical software (Ravand & Baghaei, 2019). Unfortunately, chi-square, the only 

absolute fit statistic available when estimating DCMs in Mplus, was not successfully estimated. 

However, an evaluation of the model's overall performance was still conducted using relative fit 

statistics, attribute classification reliabilities, attribute profiles and mastery proportions, and 

attribute correlations.  
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 The high reliabilities of the R1 and R3 attributes provided evidence that students were 

consistently being classified as masters or non-masters of the attributes. The lower reliability of 

the R2 factor suggests that the model struggled more to establish consistent classifications for 

this attribute. Overall, 31% of students were classified as masters of R1 and R3, while 20% were 

classified as masters of R2. Although these findings provide evidence of the consistency of 

attribute classifications, they do not provide evidence that the classifications were correct.  

An inspection of the attribute profiles and mastery proportions facilitates the evaluation 

of the model's estimated proficiencies. One of the claimed advantages of DCMs is that students 

may be assigned a mastery profile, which classifies students as masters or non-masters of 

specified attributes. A DCM with three attributes has the potential to assign students to one of 

eight mastery profiles. The DCM using the respecified Q-matrix only classified students into 

three of the eight possible profiles (Table 11). The majority of students (94%) were classified 

into two profiles, either mastering all or none of the three attributes. The inability of the model’s 

estimation of attribute profiles could reflect the realities of students’ true mastery of the theorized 

attributes or inadequacies of model estimation. In the absence of absolute fit statistics, it is 

difficult to pinpoint why students were assigned to such a limited number of mastery profiles. 

 An inspection of the item parameters (Table 14) provided additional insight into the 

relationship between attribute mastery and correct item response. The item parameters can be 

used to determine the estimated increase in the log-odds of a correct item response. This increase 

is calculated by taking the difference between the item intercept and the main effect. The 

increase in log-odds can also be represented as a probability. All main effects were statistically 

significant except for item 25 on the R2 attribute. These statistically significant main effects 
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provide evidence that the item to attribute association in the Q-matrix was not misaligned and 

contributed to the estimation of attribute mastery.  

 The high attribute correlations for this model were concerning (Table 13). The correlation 

between R3 and the other two attributes were both above .90. These high correlations have 

potential implications for the estimation of mastery profiles in which a student is classified as a 

master of one but not the other. The estimated mastery profiles found in Table 12 highlighted 

that a very small percentage of students (6.43%) did not have the same mastery classification for 

all three attributes. Meaning, the majority of students were either classified as having mastered 

all or none of the attributes. This finding resurfaces the question of whether or not this model can 

successfully estimate distinct classifications mastery for each attribute. The strong relationship 

between the attributes appears to largely go beyond the model's ability to parse distinct attribute 

mastery. 

 The analysis of the Q-matrix structure derived from the bifactor model (Table 15) found 

slight differences from the respecified Q-matrix structure (Table 11). The relative fit statistics for 

the bifactor derived Q-matrix were consistently smaller than the respecified Q-matrix structure 

(Table 21). However, these differences were relatively small (ΔAIC = 566, ΔBIC = 470, 

ΔSample-Size Adjusted BIC = 521). The percent improvement in model fit was less than 1% on 

all fit statistics ranging from 0.67% to 0.81%. These slight improvements in model fit are not, on 

their own, reason to suppose that the bifactor Q-matrix structure was superior.  

 The attribute classification reliabilities for the bifactor derived Q-matrix structure were 

not notably different from the revised Q-matrix structure. The use of the bifactor derived Q-

matrix structure did have a large impact on the attribute correlations (Table 17). 
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Table 21 

Fit Statistics for Rival Q-Matrix Structures 

Model AIC BIC Sample-Size Adjusted BIC 

Respecified Q-matrix 70148.39 70455.02 70292.97 

Bifactor Derived Q-matrix 69582.10 69984.92 69772.04 

 
The attribute correlations between G1 and the other two attributes were low enough to suggest 

that G1 was distinct from these other attributes. The extreme correlation (.993) between R1 and 

R2 is very concerning and suggests that the model could not differentiate between masters of 

these two attributes adequately.  

 The bifactor derived Q-matrix structure estimated an increased number of mastery 

profiles (Table 16). Students were classified into six of the eight possible mastery profiles using 

this Q-matrix structure. As expected, based on the attribute correlations between R1 and R2, very 

few students did not receive the same classification for both attributes (n = 6, 0.2%). Another 

notable difference with this Q-matrix structure was the reduction of students classified as masters 

of all attributes (n = 231). Item parameterization for this Q-matrix structure was more unstable 

with three main effects fixed by Mplus to stabilize model estimation. The number of non-

statistically significant main effects increased from one to three with the new Q-matrix structure.  

Use of Diagnostic Classification Models for PCA Mastery Profiles 

 The attempt to retrofit PCA response data to a DCM using the Q-matrix structure implied 

by the PCA Taxonomy was unsuccessful. The rival respecified and bifactor derived Q-matrix 

structures were estimated with limited success. Although some aspects of these models appeared 

to function well, attribute correlations and mastery profile estimates highlighted some 

fundamental deficiencies of these models. These model deficiencies, combined with the lack of 
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an ability to inspect an absolute model fit index led to the recommendation that the C-RUM 

parameterization of the LCDM not be used to generate mastery profiles. 

Limitations 

 While evidence of good model fit was presented in the factor analysis portion of this 

study, these models were the result of a specification search and did not directly represent the 

factor and Q-matrix structures implied by the PCA Taxonomy. The revised three-factor structure 

reduced the complexity of the model by removing three items from the data set and removing all 

cross-loadings. Therefore, the results of this study are based on a close approximation of the 

model implied by the PCA Taxonomy.  

 A second limitation of this study was the exclusive use of pretest PCA scores. It is 

reasonable to believe that score distributions may be different when posttest PCA scores are 

evaluated. The results of this study should only be considered in the context of pretest PCA data. 

Recommendations for Future Research 

 There are several areas in which the results of this study could inform future 

research. Future research on or using the PCA data should: 

1. Consider the use of both pretest and posttest data.  

2. Modify or develop items with the specific purpose of being analyzed by a 

DCM. 

3. Attempt to replicate the results of the factor analysis portion of this study. 

4. Use the more extensive techniques of structural equation modeling (SEM) for 

predictive research. 

5. Limit the PCA measurement model in SEM to either the general factor of the 

bifactor model or the single-factor model.  
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Future psychometric research of the PCA should include a consideration of both pretest 

and posttest data. It is currently unknown if the models presented in this study are 

invariant across pretest and posttest occasions. Several of the items in the pretest context 

were extremely difficult for students which may have attenuated variances and 

covariances between items. An investigation of posttest data might find that item 

difficulty diminishes due to a semester of mathematics instruction. The results from a 

study of measurement invariance could provide additional insight into the validity of the 

internal structure of PCA response data.  

 The results of this study found that retrofitting the PCA to a specific DCM 

parameterization was not successful. However, this finding does not entirely preclude the 

use of DCMs to provide personalized mastery profiles to students. Suppose there is a 

need or desire to provide mastery profiles. In that case, researchers should modify or 

develop items with the specific purpose of being analyzed by a DCM (e.g., Bradshaw et 

al., 2014). This process would include many of the same quality test development 

procedures used in developing the PCA and specific design considerations uniquely 

related to DCMs, including Q-matrix design and DCM parameterization (Bradshaw, 

2017; Madison & Bradshaw, 2015; Sessoms & Henson, 2018). 

 Future research into the internal structure of PCA data should attempt to replicate 

the findings of the factor analysis portion of this study. Conducting a replication study 

would provide an opportunity to verify the generalizability of the findings in this study. A 

replication study would be particularly valuable in the context of the more complex 

bifactor which, from time to time, can be difficult to replicate.   
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 In their description of the PCA, Carlson et al. wrote that the relationship between 

PCA scores and student performance in calculus had been investigated (2010, pp. 140–

141). This study's results have implications for future research into the relationship 

between PCA scores and other outcome variables such as performance in a calculus 

course. Future research should use the more extensive techniques of structural equation 

model (SEM) in conjunction with the CFA models investigated in this study. 

 The factor loadings for the General Reasoning Ability factor (Table 9) highlighted 

that each item of the PCA does not contribute equally to the measurement of student 

reasoning abilities. The respecified bifactor model (Figure 9) notably has only two 

specific factors (R1, R2) and the absence of items 13, 14, and 23. The respecified bifactor 

model analysis highlighted that the two specific R1 and R2 factors accounted for a 

limited amount of unique item variance (ECV = .77, PUC = .72). These results showed 

that although there is some degree of multidimensionality to the PCA, it should be 

considered essentially unidimensional. Therefore, researchers should only use the 

General Reasoning Ability factor from the respecified bifactor model (Figure 9) or the 

single-factor model as an outcome predictor in a structural equation model.  

Recommendations for Practice 

 The recommended practice for scoring the PCA by the authors of the instrument 

was to report a single sum score (i.e., unit-weighted composite score) for the PCA as a 

“broad indicator of reasoning abilities and understandings relative to the PCA 

Taxonomy” (Carlson et al., 2010, p. 137). This research's findings provided evidence to 

support the recommendation of reporting a single total score for the PCA. From the 

perspective of the instrument's internal structure, this study found limited evidence to 
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support the validity of reporting subscores of student reasoning abilities. To the best of 

the author’s knowledge, reporting a single total score for the PCA is currently the most 

common scoring method. As such, practitioners should continue with this scoring 

approach.  

 It is important to note that the analyses reported in this study were conducted in 

the absence of items 13, 14, and 23. However, it is recommended that in practice, these 

items be retained for content validity purposes while computing a total score for the PCA. 

Conclusion 

 This study explored the PCA's internal structure in relation to the structure implied by the 

PCA Taxonomy. CFA was used to investigate the extent to which PCA pretest data supports the 

three-factor structure theorized by the PCA Taxonomy. Results found that overall the model fit 

the data well, but high factor correlations brought into question the distinct nature of each factor. 

A rival bifactor model sought to illuminate the interrelationships among the three factors by 

allowing all items to load on a general factor and two specific factors. The fit statistics of the 

bifactor model were only slightly more favorable than the fit statistics of the three-factor model. 

However, low specific factor loadings and low reliability lead to the conclusion that these factors 

were not substantively modeling the constructs. Although there is some level of 

multidimensionality, the single-factor model appears to be the most parsimonious approach to 

modeling the internal structure of PCA pretest data. In summary, these results suggest that a 

single composite total score based on all 25 items be reported when the PCA is administered. 

 An additional analysis was conducted to examine the extent to which PCA response data 

could be retrofitted to a DCM. The purpose of this research was to explore the potential of using 

DCMs to provide students with individual mastery profiles for the three reasoning ability 
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constructs found in the PCA Taxonomy. Several different Q-matrix structures were examined, 

but all were unsuccessful in providing adequate evidence to support the use of student mastery 

profiles generated from a DCM retrofitted with PCA data.  
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APPENDIX A  

PCA Taxonomy of Foundational Knowledge for Beginning Calculus  

Adapted From Carlson et al. (2010) 

Reasoning Abilities  

• R1 Process view of function (items 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 20, 22, 23)  

o View a function as a generalized process that accepts input and produces output. 

Appropriate coordination of multiple function processes 

• R2 Covariational reasoning (items 15, 18, 19, 24, 25)  

o Coordinate two varying quantities that change in tandem while attending to how 

the quantities change in relation to each other 

• R3 Computational abilities (items 1, 3, 4, 10, 11, 14, 16, 17, 21)  

o Identify and apply appropriate algebraic manipulations and procedures to support 

creating and reasoning about function models 

Understandings  

o Understand meaning of function concepts  

 ME Function evaluation (items 1, 5, 6, 11, 12, 16, 20)  

 MR Rate of change (items 8, 10, 11, 15, 19, 22)  

 MC Function composition (items 4, 5, 12, 16, 17, 20, 23)  

 MI Function inverse (items 2, 4, 9, 10, 13, 14, 23)  

o Understand growth rate of function types  

 GL Linear (items 3, 10, 22)  

 GE Exponential (item 7)  

 GR Rational (items 18, 25)  

 GN General non-linear (items 15, 19, 24)  

o Understand function representations (interpret, use, construct, connect)  

 RG Graphical (items 2, 5, 6, 8, 9, 10, 15, 19, 24)  

 RA Algebraic (items 1, 4, 7, 10, 11, 14, 16, 17, 18, 21, 22, 23, 25)  

 RN Numerical (items 3, 12, 13)  

 RC Contextual (items 3, 4, 7, 8, 10, 11, 15, 17, 18, 20, 22)
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APPENDIX B  

Analysis of Articles Citing Carlson et al. (2010) 

Table B1 

Carlson et al. (2010) Citation Matrix 
     

Citation List Reference 
to Theory 

Instrument 
Reference 

Type 
of Test 

PCA 
Data Psychometric 

(Aguilar et al., 2017; Ayalon et al., 2016; Bannerjee, 2017; Breen et al., 2015; Cho & Nagle, 2017; Dawkins & 
Epperson, 2014; de Beer, 2011, 2016; de Beer et al., 2018; Engelke et al., 2018; Ferguson, 2012; Flynn et al., 
2015; Fowler, 2014; Hitt & González-Martín, 2015; Huang et al., 2012; Koştur & Yılmaz, 2017; LaRue, 2017; 
Leshota, 2015; Mielicki & Wiley, 2016; Nagle et al., 2013; Nagle et al., 2017; Nagle & Moore-Russo, 2014; 
Nagle, 2013; Özdil, 2012; Phifer, 2014; Rostorfer, 2014; Savic et al., 2017; Sevim & Cifarelli, 2014; Sutton, 
2015; Tallman, 2015; Tang, 2012; R. Thomas, 2015; Thompson, 2013; Yemen-Karpuzcu et al., 2017) 
 

1     

(Marfai, 2016; McCrory et al., 2012; Mejia-Ramos et al., 2017; Musgrave & Carlson, 2017; Speer & Kung, 
2018; Thompson et al., 2013) 
 

 1    

(Bagley et al., 2015; Bagley et al., 2016; Froyd et al., 2012; Giovanniello, 2017; Haider et al., 2016; Stanhope 
et al., 2017; M. Thomas, 2013; M. Thomas & Lozano, 2012; Thompson, 2014) 
 

  1   

(Karakok et al., 2013) 
    1  

(Horvath, 2012; K. Moore, 2013; Perez, 2013; Watson, 2015) 
 1 1    

(Bain & Towns, 2016; Byerley, 2016; Gleason et al., 2015; Melhuish, 2015; Thompson, 2015) 
  1 1   

(Avila, 2013) 
 1  1   

(Cousino, 2013; Cromley et al., 2017; Kassaee, 2016; Kim, 2017; K. C. Moore et al., 2014; Thompson & 
Carlson, 2017; Weber et al., 2015) 
 

 1  1  

(Byerley, 2016) 
 1   1  

(O’Shea et al., 2016) 
 1 1 1   

(Doerr et al., 2014; Drlik, 2015; Meylani & Teuscher, 2011a, 2011b; D. Miller et al., 2015; Palha & Koopman, 
2016; Silverman, 2017; Teuscher & Reys, 2012; R. V. Thomas, 2016; Vrabel, 2014; Wills et al., 2014) 
 

1 1  1  

(Zahner et al., 2017) 
  1 1 1 1 

(Williams, 2017) 1 1 1 1  
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